Cambios
En el instante 21 de octubre de 2025, 8:59:16 UTC,
-
Añadido recurso Feature Analysis for Urban-land Change of Morelia City Via the TOC Curve a Feature Analysis for Urban-land Change of Morelia City Via the TOC Curve
| f | 1 | { | f | 1 | { |
| 2 | "author": "R Lopez-Farias, SI Valdez, A Garcia-Robledo, T Bilintoh, | 2 | "author": "R Lopez-Farias, SI Valdez, A Garcia-Robledo, T Bilintoh, | ||
| 3 | FN Bautista", | 3 | FN Bautista", | ||
| 4 | "author_email": null, | 4 | "author_email": null, | ||
| 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 6 | "extras": [ | 6 | "extras": [ | ||
| 7 | { | 7 | { | ||
| 8 | "key": "A\u00f1o", | 8 | "key": "A\u00f1o", | ||
| 9 | "value": "2023" | 9 | "value": "2023" | ||
| 10 | }, | 10 | }, | ||
| 11 | { | 11 | { | ||
| 12 | "key": "DOI", | 12 | "key": "DOI", | ||
| 13 | "value": "https://doi.org/10.1109/enc60556.2023.10508696" | 13 | "value": "https://doi.org/10.1109/enc60556.2023.10508696" | ||
| 14 | }, | 14 | }, | ||
| 15 | { | 15 | { | ||
| 16 | "key": "Google Scholar URL", | 16 | "key": "Google Scholar URL", | ||
| 17 | "value": | 17 | "value": | ||
| 18 | gesize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:UebtZRa9Y70C" | 18 | gesize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:UebtZRa9Y70C" | ||
| 19 | }, | 19 | }, | ||
| 20 | { | 20 | { | ||
| 21 | "key": "Identificador hash", | 21 | "key": "Identificador hash", | ||
| 22 | "value": "c7273c69938b" | 22 | "value": "c7273c69938b" | ||
| 23 | }, | 23 | }, | ||
| 24 | { | 24 | { | ||
| 25 | "key": "Lugar de publicaci\u00f3n", | 25 | "key": "Lugar de publicaci\u00f3n", | ||
| 26 | "value": "2023 Mexican International Conference on Computer | 26 | "value": "2023 Mexican International Conference on Computer | ||
| 27 | Science (ENC), 1-8, 2023" | 27 | Science (ENC), 1-8, 2023" | ||
| 28 | }, | 28 | }, | ||
| 29 | { | 29 | { | ||
| 30 | "key": "Tipo", | 30 | "key": "Tipo", | ||
| 31 | "value": "Publicaci\u00f3n" | 31 | "value": "Publicaci\u00f3n" | ||
| 32 | }, | 32 | }, | ||
| 33 | { | 33 | { | ||
| 34 | "key": "Tipo de publicaci\u00f3n", | 34 | "key": "Tipo de publicaci\u00f3n", | ||
| 35 | "value": "Conferencia" | 35 | "value": "Conferencia" | ||
| 36 | }, | 36 | }, | ||
| 37 | { | 37 | { | ||
| 38 | "key": "URL directo", | 38 | "key": "URL directo", | ||
| 39 | "value": | 39 | "value": | ||
| 40 | "https://ieeexplore.ieee.org/abstract/document/10508696/" | 40 | "https://ieeexplore.ieee.org/abstract/document/10508696/" | ||
| 41 | } | 41 | } | ||
| 42 | ], | 42 | ], | ||
| 43 | "groups": [ | 43 | "groups": [ | ||
| 44 | { | 44 | { | ||
| 45 | "description": "", | 45 | "description": "", | ||
| 46 | "display_name": "Publicaciones", | 46 | "display_name": "Publicaciones", | ||
| 47 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 47 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
| 48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
| 49 | "name": "publicaciones", | 49 | "name": "publicaciones", | ||
| 50 | "title": "Publicaciones" | 50 | "title": "Publicaciones" | ||
| 51 | } | 51 | } | ||
| 52 | ], | 52 | ], | ||
| 53 | "id": "7026d520-4f06-4869-a255-057b76e48d02", | 53 | "id": "7026d520-4f06-4869-a255-057b76e48d02", | ||
| 54 | "isopen": false, | 54 | "isopen": false, | ||
| 55 | "license_id": null, | 55 | "license_id": null, | ||
| 56 | "license_title": null, | 56 | "license_title": null, | ||
| 57 | "maintainer": null, | 57 | "maintainer": null, | ||
| 58 | "maintainer_email": null, | 58 | "maintainer_email": null, | ||
| 59 | "metadata_created": "2025-10-21T08:59:15.731694", | 59 | "metadata_created": "2025-10-21T08:59:15.731694", | ||
| n | 60 | "metadata_modified": "2025-10-21T08:59:15.731707", | n | 60 | "metadata_modified": "2025-10-21T08:59:16.296136", |
| 61 | "name": "c7273c69938b", | 61 | "name": "c7273c69938b", | ||
| 62 | "notes": "The feature analysis for feature selection is an important | 62 | "notes": "The feature analysis for feature selection is an important | ||
| 63 | step for defining the inputs of the simulation models for urban | 63 | step for defining the inputs of the simulation models for urban | ||
| 64 | growth. The simulation models are valuable tools for describing the | 64 | growth. The simulation models are valuable tools for describing the | ||
| 65 | spatiotemporal evolution and probable scenarios of the urban | 65 | spatiotemporal evolution and probable scenarios of the urban | ||
| 66 | development of a region. These models use predictors such as distance | 66 | development of a region. These models use predictors such as distance | ||
| 67 | to the city center, highways, roads, and water bodies, among others, | 67 | to the city center, highways, roads, and water bodies, among others, | ||
| 68 | to forecast land changes. The importance of each characteristic is | 68 | to forecast land changes. The importance of each characteristic is | ||
| 69 | unknown a priori. Furthermore, whether a predictor provides any | 69 | unknown a priori. Furthermore, whether a predictor provides any | ||
| 70 | information is not evident. In this work, we analyze the predictive | 70 | information is not evident. In this work, we analyze the predictive | ||
| 71 | response of a set of features to determine whether they are | 71 | response of a set of features to determine whether they are | ||
| 72 | informative and their degree of influence in the prediction. The | 72 | informative and their degree of influence in the prediction. The | ||
| 73 | analysis uses the Total Operating Characteristic (TOC) curve to | 73 | analysis uses the Total Operating Characteristic (TOC) curve to | ||
| 74 | measure a feature's relevance. The results provide insights into the | 74 | measure a feature's relevance. The results provide insights into the | ||
| 75 | relation of a feature with the urban land change and the degree of | 75 | relation of a feature with the urban land change and the degree of | ||
| 76 | influence as a single predictor. Although a broader study that uses | 76 | influence as a single predictor. Although a broader study that uses | ||
| 77 | sets of features could provide further conclusions, this study serves | 77 | sets of features could provide further conclusions, this study serves | ||
| 78 | as a base comparing method and a starting point for feature selection | 78 | as a base comparing method and a starting point for feature selection | ||
| 79 | in urban simulation models.", | 79 | in urban simulation models.", | ||
| n | 80 | "num_resources": 0, | n | 80 | "num_resources": 1, |
| 81 | "num_tags": 13, | 81 | "num_tags": 13, | ||
| 82 | "organization": { | 82 | "organization": { | ||
| 83 | "approval_status": "approved", | 83 | "approval_status": "approved", | ||
| 84 | "created": "2022-05-19T00:10:30.480393", | 84 | "created": "2022-05-19T00:10:30.480393", | ||
| 85 | "description": "Observatorio Metropolitano CentroGeo", | 85 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 86 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 86 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 87 | "image_url": | 87 | "image_url": | ||
| 88 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 88 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 89 | "is_organization": true, | 89 | "is_organization": true, | ||
| 90 | "name": "observatorio-metropolitano-centrogeo", | 90 | "name": "observatorio-metropolitano-centrogeo", | ||
| 91 | "state": "active", | 91 | "state": "active", | ||
| 92 | "title": "Observatorio Metropolitano CentroGeo", | 92 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 93 | "type": "organization" | 93 | "type": "organization" | ||
| 94 | }, | 94 | }, | ||
| 95 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 95 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 96 | "private": false, | 96 | "private": false, | ||
| 97 | "relationships_as_object": [], | 97 | "relationships_as_object": [], | ||
| 98 | "relationships_as_subject": [], | 98 | "relationships_as_subject": [], | ||
| t | 99 | "resources": [], | t | 99 | "resources": [ |
| 100 | { | ||||
| 101 | "cache_last_updated": null, | ||||
| 102 | "cache_url": null, | ||||
| 103 | "created": "2025-10-21T08:59:16.330117", | ||||
| 104 | "datastore_active": false, | ||||
| 105 | "description": "The feature analysis for feature selection is an | ||||
| 106 | important step for defining the inputs of the simulation models for | ||||
| 107 | urban growth. The simulation models are valuable tools for describing | ||||
| 108 | the spatiotemporal evolution and probable scenarios of the urban | ||||
| 109 | development of a region. These models use predictors such as distance | ||||
| 110 | to the city center, highways, roads, and water bodies, among others, | ||||
| 111 | to forecast land changes. The importance of each characteristic is | ||||
| 112 | unknown a priori. Furthermore, whether a predictor provides any | ||||
| 113 | information is not evident. In this work, we analyze the predictive | ||||
| 114 | response of a set of features to determine whether they are | ||||
| 115 | informative and their degree of influence in the prediction. The | ||||
| 116 | analysis uses the Total Operating Characteristic (TOC) curve to | ||||
| 117 | measure a feature's relevance. The results provide insights into the | ||||
| 118 | relation of a feature with the urban land change and the degree of | ||||
| 119 | influence as a single predictor. Although a broader study that uses | ||||
| 120 | sets of features could provide further conclusions, this study serves | ||||
| 121 | as a base comparing method and a starting point for feature selection | ||||
| 122 | in urban simulation models.", | ||||
| 123 | "format": "HTML", | ||||
| 124 | "hash": "", | ||||
| 125 | "id": "6f4e3f51-3923-4e34-b247-ad76dcce39cf", | ||||
| 126 | "last_modified": null, | ||||
| 127 | "metadata_modified": "2025-10-21T08:59:16.300035", | ||||
| 128 | "mimetype": null, | ||||
| 129 | "mimetype_inner": null, | ||||
| 130 | "name": "Feature Analysis for Urban-land Change of Morelia City | ||||
| 131 | Via the TOC Curve", | ||||
| 132 | "package_id": "7026d520-4f06-4869-a255-057b76e48d02", | ||||
| 133 | "position": 0, | ||||
| 134 | "resource_type": null, | ||||
| 135 | "size": null, | ||||
| 136 | "state": "active", | ||||
| 137 | "url": | ||||
| 138 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:UebtZRa9Y70C", | ||||
| 139 | "url_type": null | ||||
| 140 | } | ||||
| 141 | ], | ||||
| 100 | "state": "active", | 142 | "state": "active", | ||
| 101 | "tags": [ | 143 | "tags": [ | ||
| 102 | { | 144 | { | ||
| 103 | "display_name": "2023", | 145 | "display_name": "2023", | ||
| 104 | "id": "197c32f9-e42e-4e22-b265-0a55651ced0a", | 146 | "id": "197c32f9-e42e-4e22-b265-0a55651ced0a", | ||
| 105 | "name": "2023", | 147 | "name": "2023", | ||
| 106 | "state": "active", | 148 | "state": "active", | ||
| 107 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
| 108 | }, | 150 | }, | ||
| 109 | { | 151 | { | ||
| 110 | "display_name": "a-priori-and-a-posteriori", | 152 | "display_name": "a-priori-and-a-posteriori", | ||
| 111 | "id": "65390f44-ab4c-4f97-8afe-75c72e71e50c", | 153 | "id": "65390f44-ab4c-4f97-8afe-75c72e71e50c", | ||
| 112 | "name": "a-priori-and-a-posteriori", | 154 | "name": "a-priori-and-a-posteriori", | ||
| 113 | "state": "active", | 155 | "state": "active", | ||
| 114 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
| 115 | }, | 157 | }, | ||
| 116 | { | 158 | { | ||
| 117 | "display_name": "albertogarob", | 159 | "display_name": "albertogarob", | ||
| 118 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | 160 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | ||
| 119 | "name": "albertogarob", | 161 | "name": "albertogarob", | ||
| 120 | "state": "active", | 162 | "state": "active", | ||
| 121 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
| 122 | }, | 164 | }, | ||
| 123 | { | 165 | { | ||
| 124 | "display_name": "artificial-intelligence", | 166 | "display_name": "artificial-intelligence", | ||
| 125 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 167 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
| 126 | "name": "artificial-intelligence", | 168 | "name": "artificial-intelligence", | ||
| 127 | "state": "active", | 169 | "state": "active", | ||
| 128 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
| 129 | }, | 171 | }, | ||
| 130 | { | 172 | { | ||
| 131 | "display_name": "computer-science", | 173 | "display_name": "computer-science", | ||
| 132 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 174 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
| 133 | "name": "computer-science", | 175 | "name": "computer-science", | ||
| 134 | "state": "active", | 176 | "state": "active", | ||
| 135 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
| 136 | }, | 178 | }, | ||
| 137 | { | 179 | { | ||
| 138 | "display_name": "data-mining", | 180 | "display_name": "data-mining", | ||
| 139 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | 181 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | ||
| 140 | "name": "data-mining", | 182 | "name": "data-mining", | ||
| 141 | "state": "active", | 183 | "state": "active", | ||
| 142 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
| 143 | }, | 185 | }, | ||
| 144 | { | 186 | { | ||
| 145 | "display_name": "feature-linguistics", | 187 | "display_name": "feature-linguistics", | ||
| 146 | "id": "359a6897-20b1-4cd2-bb05-6336c1652ac3", | 188 | "id": "359a6897-20b1-4cd2-bb05-6336c1652ac3", | ||
| 147 | "name": "feature-linguistics", | 189 | "name": "feature-linguistics", | ||
| 148 | "state": "active", | 190 | "state": "active", | ||
| 149 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
| 150 | }, | 192 | }, | ||
| 151 | { | 193 | { | ||
| 152 | "display_name": "feature-selection", | 194 | "display_name": "feature-selection", | ||
| 153 | "id": "b726524c-3c26-401c-b29d-a509f4a9ad38", | 195 | "id": "b726524c-3c26-401c-b29d-a509f4a9ad38", | ||
| 154 | "name": "feature-selection", | 196 | "name": "feature-selection", | ||
| 155 | "state": "active", | 197 | "state": "active", | ||
| 156 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
| 157 | }, | 199 | }, | ||
| 158 | { | 200 | { | ||
| 159 | "display_name": "machine-learning", | 201 | "display_name": "machine-learning", | ||
| 160 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | 202 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | ||
| 161 | "name": "machine-learning", | 203 | "name": "machine-learning", | ||
| 162 | "state": "active", | 204 | "state": "active", | ||
| 163 | "vocabulary_id": null | 205 | "vocabulary_id": null | ||
| 164 | }, | 206 | }, | ||
| 165 | { | 207 | { | ||
| 166 | "display_name": "measure-data-warehouse", | 208 | "display_name": "measure-data-warehouse", | ||
| 167 | "id": "1d7ee22c-d27e-44aa-a831-3b520a951fba", | 209 | "id": "1d7ee22c-d27e-44aa-a831-3b520a951fba", | ||
| 168 | "name": "measure-data-warehouse", | 210 | "name": "measure-data-warehouse", | ||
| 169 | "state": "active", | 211 | "state": "active", | ||
| 170 | "vocabulary_id": null | 212 | "vocabulary_id": null | ||
| 171 | }, | 213 | }, | ||
| 172 | { | 214 | { | ||
| 173 | "display_name": "relevance-law", | 215 | "display_name": "relevance-law", | ||
| 174 | "id": "829d2e05-8cb0-4c03-af39-db64ae13bed4", | 216 | "id": "829d2e05-8cb0-4c03-af39-db64ae13bed4", | ||
| 175 | "name": "relevance-law", | 217 | "name": "relevance-law", | ||
| 176 | "state": "active", | 218 | "state": "active", | ||
| 177 | "vocabulary_id": null | 219 | "vocabulary_id": null | ||
| 178 | }, | 220 | }, | ||
| 179 | { | 221 | { | ||
| 180 | "display_name": "set-abstract-data-type", | 222 | "display_name": "set-abstract-data-type", | ||
| 181 | "id": "b2cf6bcc-6aa2-4a45-9c63-4066f4e32845", | 223 | "id": "b2cf6bcc-6aa2-4a45-9c63-4066f4e32845", | ||
| 182 | "name": "set-abstract-data-type", | 224 | "name": "set-abstract-data-type", | ||
| 183 | "state": "active", | 225 | "state": "active", | ||
| 184 | "vocabulary_id": null | 226 | "vocabulary_id": null | ||
| 185 | }, | 227 | }, | ||
| 186 | { | 228 | { | ||
| 187 | "display_name": "svaldez", | 229 | "display_name": "svaldez", | ||
| 188 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 230 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
| 189 | "name": "svaldez", | 231 | "name": "svaldez", | ||
| 190 | "state": "active", | 232 | "state": "active", | ||
| 191 | "vocabulary_id": null | 233 | "vocabulary_id": null | ||
| 192 | } | 234 | } | ||
| 193 | ], | 235 | ], | ||
| 194 | "title": "Feature Analysis for Urban-land Change of Morelia City Via | 236 | "title": "Feature Analysis for Urban-land Change of Morelia City Via | ||
| 195 | the TOC Curve", | 237 | the TOC Curve", | ||
| 196 | "type": "dataset", | 238 | "type": "dataset", | ||
| 197 | "url": | 239 | "url": | ||
| 198 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:UebtZRa9Y70C", | 240 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:UebtZRa9Y70C", | ||
| 199 | "version": null | 241 | "version": null | ||
| 200 | } | 242 | } |
