Cambios
En el instante 21 de octubre de 2025, 9:02:03 UTC,
-
Añadido recurso An evolutionary algorithm of linear complexity: application to training of deep neural networks a An evolutionary algorithm of linear complexity: application to training of deep neural networks
| f | 1 | { | f | 1 | { |
| 2 | "author": "SI Valdez, A Rojas-Dom\u00ednguez", | 2 | "author": "SI Valdez, A Rojas-Dom\u00ednguez", | ||
| 3 | "author_email": null, | 3 | "author_email": null, | ||
| 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 5 | "extras": [ | 5 | "extras": [ | ||
| 6 | { | 6 | { | ||
| 7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
| 8 | "value": "2019" | 8 | "value": "2019" | ||
| 9 | }, | 9 | }, | ||
| 10 | { | 10 | { | ||
| 11 | "key": "Google Scholar URL", | 11 | "key": "Google Scholar URL", | ||
| 12 | "value": | 12 | "value": | ||
| 13 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:70eg2SAEIzsC" | 13 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:70eg2SAEIzsC" | ||
| 14 | }, | 14 | }, | ||
| 15 | { | 15 | { | ||
| 16 | "key": "Identificador hash", | 16 | "key": "Identificador hash", | ||
| 17 | "value": "968ea34084e1" | 17 | "value": "968ea34084e1" | ||
| 18 | }, | 18 | }, | ||
| 19 | { | 19 | { | ||
| 20 | "key": "Lugar de publicaci\u00f3n", | 20 | "key": "Lugar de publicaci\u00f3n", | ||
| 21 | "value": "arXiv preprint arXiv:1907.05951, 2019" | 21 | "value": "arXiv preprint arXiv:1907.05951, 2019" | ||
| 22 | }, | 22 | }, | ||
| 23 | { | 23 | { | ||
| 24 | "key": "Tipo", | 24 | "key": "Tipo", | ||
| 25 | "value": "Publicaci\u00f3n" | 25 | "value": "Publicaci\u00f3n" | ||
| 26 | }, | 26 | }, | ||
| 27 | { | 27 | { | ||
| 28 | "key": "Tipo de publicaci\u00f3n", | 28 | "key": "Tipo de publicaci\u00f3n", | ||
| 29 | "value": "Otro" | 29 | "value": "Otro" | ||
| 30 | }, | 30 | }, | ||
| 31 | { | 31 | { | ||
| 32 | "key": "URL directo", | 32 | "key": "URL directo", | ||
| 33 | "value": "https://arxiv.org/pdf/1907.05951" | 33 | "value": "https://arxiv.org/pdf/1907.05951" | ||
| 34 | } | 34 | } | ||
| 35 | ], | 35 | ], | ||
| 36 | "groups": [ | 36 | "groups": [ | ||
| 37 | { | 37 | { | ||
| 38 | "description": "", | 38 | "description": "", | ||
| 39 | "display_name": "Publicaciones", | 39 | "display_name": "Publicaciones", | ||
| 40 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 40 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
| 41 | "image_display_url": "", | 41 | "image_display_url": "", | ||
| 42 | "name": "publicaciones", | 42 | "name": "publicaciones", | ||
| 43 | "title": "Publicaciones" | 43 | "title": "Publicaciones" | ||
| 44 | } | 44 | } | ||
| 45 | ], | 45 | ], | ||
| 46 | "id": "ec18fcf0-ee96-4e83-a619-035aa9898085", | 46 | "id": "ec18fcf0-ee96-4e83-a619-035aa9898085", | ||
| 47 | "isopen": false, | 47 | "isopen": false, | ||
| 48 | "license_id": null, | 48 | "license_id": null, | ||
| 49 | "license_title": null, | 49 | "license_title": null, | ||
| 50 | "maintainer": null, | 50 | "maintainer": null, | ||
| 51 | "maintainer_email": null, | 51 | "maintainer_email": null, | ||
| 52 | "metadata_created": "2025-10-21T09:02:02.444448", | 52 | "metadata_created": "2025-10-21T09:02:02.444448", | ||
| n | 53 | "metadata_modified": "2025-10-21T09:02:02.444461", | n | 53 | "metadata_modified": "2025-10-21T09:02:03.000431", |
| 54 | "name": "968ea34084e1", | 54 | "name": "968ea34084e1", | ||
| 55 | "notes": "The performance of deep neural networks, such as Deep | 55 | "notes": "The performance of deep neural networks, such as Deep | ||
| 56 | Belief Networks formed by Restricted Boltzmann Machines (RBMs), | 56 | Belief Networks formed by Restricted Boltzmann Machines (RBMs), | ||
| 57 | strongly depends on their training, which is the process of adjusting | 57 | strongly depends on their training, which is the process of adjusting | ||
| 58 | their parameters. This process can be posed as an optimization problem | 58 | their parameters. This process can be posed as an optimization problem | ||
| 59 | over n dimensions. However, typical networks contain tens of thousands | 59 | over n dimensions. However, typical networks contain tens of thousands | ||
| 60 | of parameters, making this a High-Dimensional Problem (HDP). Although | 60 | of parameters, making this a High-Dimensional Problem (HDP). Although | ||
| 61 | different optimization methods have been employed for this goal, the | 61 | different optimization methods have been employed for this goal, the | ||
| 62 | use of most of the Evolutionary Algorithms (EAs) becomes prohibitive | 62 | use of most of the Evolutionary Algorithms (EAs) becomes prohibitive | ||
| 63 | due to their inability to deal with HDPs. For instance, the Covariance | 63 | due to their inability to deal with HDPs. For instance, the Covariance | ||
| 64 | Matrix Adaptation Evolutionary Strategy (CMA-ES) which is regarded as | 64 | Matrix Adaptation Evolutionary Strategy (CMA-ES) which is regarded as | ||
| 65 | one of the most effective EAs, exhibits the enormous disadvantage of | 65 | one of the most effective EAs, exhibits the enormous disadvantage of | ||
| 66 | requiring $O(n^2)$ memory and operations, making it unpractical for | 66 | requiring $O(n^2)$ memory and operations, making it unpractical for | ||
| 67 | problems with more than a few hundred variables. In this paper, we | 67 | problems with more than a few hundred variables. In this paper, we | ||
| 68 | introduce a novel EA that requires $O(n)$ operations and memory, but | 68 | introduce a novel EA that requires $O(n)$ operations and memory, but | ||
| 69 | delivers competitive solutions for the training stage of RBMs with | 69 | delivers competitive solutions for the training stage of RBMs with | ||
| 70 | over one million variables, when compared against CMA-ES and the | 70 | over one million variables, when compared against CMA-ES and the | ||
| 71 | Contrastive Divergence algorithm, which is the standard method for | 71 | Contrastive Divergence algorithm, which is the standard method for | ||
| 72 | training RBMs.", | 72 | training RBMs.", | ||
| n | 73 | "num_resources": 0, | n | 73 | "num_resources": 1, |
| 74 | "num_tags": 15, | 74 | "num_tags": 15, | ||
| 75 | "organization": { | 75 | "organization": { | ||
| 76 | "approval_status": "approved", | 76 | "approval_status": "approved", | ||
| 77 | "created": "2022-05-19T00:10:30.480393", | 77 | "created": "2022-05-19T00:10:30.480393", | ||
| 78 | "description": "Observatorio Metropolitano CentroGeo", | 78 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 79 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 79 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 80 | "image_url": | 80 | "image_url": | ||
| 81 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 81 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 82 | "is_organization": true, | 82 | "is_organization": true, | ||
| 83 | "name": "observatorio-metropolitano-centrogeo", | 83 | "name": "observatorio-metropolitano-centrogeo", | ||
| 84 | "state": "active", | 84 | "state": "active", | ||
| 85 | "title": "Observatorio Metropolitano CentroGeo", | 85 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 86 | "type": "organization" | 86 | "type": "organization" | ||
| 87 | }, | 87 | }, | ||
| 88 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 88 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 89 | "private": false, | 89 | "private": false, | ||
| 90 | "relationships_as_object": [], | 90 | "relationships_as_object": [], | ||
| 91 | "relationships_as_subject": [], | 91 | "relationships_as_subject": [], | ||
| t | 92 | "resources": [], | t | 92 | "resources": [ |
| 93 | { | ||||
| 94 | "cache_last_updated": null, | ||||
| 95 | "cache_url": null, | ||||
| 96 | "created": "2025-10-21T09:02:03.040430", | ||||
| 97 | "datastore_active": false, | ||||
| 98 | "description": "The performance of deep neural networks, such as | ||||
| 99 | Deep Belief Networks formed by Restricted Boltzmann Machines (RBMs), | ||||
| 100 | strongly depends on their training, which is the process of adjusting | ||||
| 101 | their parameters. This process can be posed as an optimization problem | ||||
| 102 | over n dimensions. However, typical networks contain tens of thousands | ||||
| 103 | of parameters, making this a High-Dimensional Problem (HDP). Although | ||||
| 104 | different optimization methods have been employed for this goal, the | ||||
| 105 | use of most of the Evolutionary Algorithms (EAs) becomes prohibitive | ||||
| 106 | due to their inability to deal with HDPs. For instance, the Covariance | ||||
| 107 | Matrix Adaptation Evolutionary Strategy (CMA-ES) which is regarded as | ||||
| 108 | one of the most effective EAs, exhibits the enormous disadvantage of | ||||
| 109 | requiring $O(n^2)$ memory and operations, making it unpractical for | ||||
| 110 | problems with more than a few hundred variables. In this paper, we | ||||
| 111 | introduce a novel EA that requires $O(n)$ operations and memory, but | ||||
| 112 | delivers competitive solutions for the training stage of RBMs with | ||||
| 113 | over one million variables, when compared against CMA-ES and the | ||||
| 114 | Contrastive Divergence algorithm, which is the standard method for | ||||
| 115 | training RBMs.", | ||||
| 116 | "format": "HTML", | ||||
| 117 | "hash": "", | ||||
| 118 | "id": "7efd7444-518b-4fab-aae7-da271d1b50b1", | ||||
| 119 | "last_modified": null, | ||||
| 120 | "metadata_modified": "2025-10-21T09:02:03.004487", | ||||
| 121 | "mimetype": null, | ||||
| 122 | "mimetype_inner": null, | ||||
| 123 | "name": "An evolutionary algorithm of linear complexity: | ||||
| 124 | application to training of deep neural networks", | ||||
| 125 | "package_id": "ec18fcf0-ee96-4e83-a619-035aa9898085", | ||||
| 126 | "position": 0, | ||||
| 127 | "resource_type": null, | ||||
| 128 | "size": null, | ||||
| 129 | "state": "active", | ||||
| 130 | "url": | ||||
| 131 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:70eg2SAEIzsC", | ||||
| 132 | "url_type": null | ||||
| 133 | } | ||||
| 134 | ], | ||||
| 93 | "state": "active", | 135 | "state": "active", | ||
| 94 | "tags": [ | 136 | "tags": [ | ||
| 95 | { | 137 | { | ||
| 96 | "display_name": "2019", | 138 | "display_name": "2019", | ||
| 97 | "id": "856c48cd-5e9b-4ee9-9342-d17b6fe761a5", | 139 | "id": "856c48cd-5e9b-4ee9-9342-d17b6fe761a5", | ||
| 98 | "name": "2019", | 140 | "name": "2019", | ||
| 99 | "state": "active", | 141 | "state": "active", | ||
| 100 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
| 101 | }, | 143 | }, | ||
| 102 | { | 144 | { | ||
| 103 | "display_name": "algorithm", | 145 | "display_name": "algorithm", | ||
| 104 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 146 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
| 105 | "name": "algorithm", | 147 | "name": "algorithm", | ||
| 106 | "state": "active", | 148 | "state": "active", | ||
| 107 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
| 108 | }, | 150 | }, | ||
| 109 | { | 151 | { | ||
| 110 | "display_name": "artificial-intelligence", | 152 | "display_name": "artificial-intelligence", | ||
| 111 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 153 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
| 112 | "name": "artificial-intelligence", | 154 | "name": "artificial-intelligence", | ||
| 113 | "state": "active", | 155 | "state": "active", | ||
| 114 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
| 115 | }, | 157 | }, | ||
| 116 | { | 158 | { | ||
| 117 | "display_name": "artificial-neural-network", | 159 | "display_name": "artificial-neural-network", | ||
| 118 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | 160 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | ||
| 119 | "name": "artificial-neural-network", | 161 | "name": "artificial-neural-network", | ||
| 120 | "state": "active", | 162 | "state": "active", | ||
| 121 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
| 122 | }, | 164 | }, | ||
| 123 | { | 165 | { | ||
| 124 | "display_name": "boltzmann-machine", | 166 | "display_name": "boltzmann-machine", | ||
| 125 | "id": "5eee20bd-596c-4b7f-a187-efb2a9478358", | 167 | "id": "5eee20bd-596c-4b7f-a187-efb2a9478358", | ||
| 126 | "name": "boltzmann-machine", | 168 | "name": "boltzmann-machine", | ||
| 127 | "state": "active", | 169 | "state": "active", | ||
| 128 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
| 129 | }, | 171 | }, | ||
| 130 | { | 172 | { | ||
| 131 | "display_name": "cma-es", | 173 | "display_name": "cma-es", | ||
| 132 | "id": "352ed64b-c0c4-4780-a4f1-871f7df7691f", | 174 | "id": "352ed64b-c0c4-4780-a4f1-871f7df7691f", | ||
| 133 | "name": "cma-es", | 175 | "name": "cma-es", | ||
| 134 | "state": "active", | 176 | "state": "active", | ||
| 135 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
| 136 | }, | 178 | }, | ||
| 137 | { | 179 | { | ||
| 138 | "display_name": "computer-science", | 180 | "display_name": "computer-science", | ||
| 139 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 181 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
| 140 | "name": "computer-science", | 182 | "name": "computer-science", | ||
| 141 | "state": "active", | 183 | "state": "active", | ||
| 142 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
| 143 | }, | 185 | }, | ||
| 144 | { | 186 | { | ||
| 145 | "display_name": "deep-neural-networks", | 187 | "display_name": "deep-neural-networks", | ||
| 146 | "id": "4f23ca30-4b12-401d-a93c-958cf047df6e", | 188 | "id": "4f23ca30-4b12-401d-a93c-958cf047df6e", | ||
| 147 | "name": "deep-neural-networks", | 189 | "name": "deep-neural-networks", | ||
| 148 | "state": "active", | 190 | "state": "active", | ||
| 149 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
| 150 | }, | 192 | }, | ||
| 151 | { | 193 | { | ||
| 152 | "display_name": "divergence-linguistics", | 194 | "display_name": "divergence-linguistics", | ||
| 153 | "id": "34d5602a-4b6e-464f-bc6e-c6636fc7cc58", | 195 | "id": "34d5602a-4b6e-464f-bc6e-c6636fc7cc58", | ||
| 154 | "name": "divergence-linguistics", | 196 | "name": "divergence-linguistics", | ||
| 155 | "state": "active", | 197 | "state": "active", | ||
| 156 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
| 157 | }, | 199 | }, | ||
| 158 | { | 200 | { | ||
| 159 | "display_name": "evolution-strategy", | 201 | "display_name": "evolution-strategy", | ||
| 160 | "id": "836dbf9c-a84f-424f-8df2-441a41df838c", | 202 | "id": "836dbf9c-a84f-424f-8df2-441a41df838c", | ||
| 161 | "name": "evolution-strategy", | 203 | "name": "evolution-strategy", | ||
| 162 | "state": "active", | 204 | "state": "active", | ||
| 163 | "vocabulary_id": null | 205 | "vocabulary_id": null | ||
| 164 | }, | 206 | }, | ||
| 165 | { | 207 | { | ||
| 166 | "display_name": "evolutionary-algorithm", | 208 | "display_name": "evolutionary-algorithm", | ||
| 167 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | 209 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | ||
| 168 | "name": "evolutionary-algorithm", | 210 | "name": "evolutionary-algorithm", | ||
| 169 | "state": "active", | 211 | "state": "active", | ||
| 170 | "vocabulary_id": null | 212 | "vocabulary_id": null | ||
| 171 | }, | 213 | }, | ||
| 172 | { | 214 | { | ||
| 173 | "display_name": "machine-learning", | 215 | "display_name": "machine-learning", | ||
| 174 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | 216 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | ||
| 175 | "name": "machine-learning", | 217 | "name": "machine-learning", | ||
| 176 | "state": "active", | 218 | "state": "active", | ||
| 177 | "vocabulary_id": null | 219 | "vocabulary_id": null | ||
| 178 | }, | 220 | }, | ||
| 179 | { | 221 | { | ||
| 180 | "display_name": "mathematical-optimization", | 222 | "display_name": "mathematical-optimization", | ||
| 181 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 223 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
| 182 | "name": "mathematical-optimization", | 224 | "name": "mathematical-optimization", | ||
| 183 | "state": "active", | 225 | "state": "active", | ||
| 184 | "vocabulary_id": null | 226 | "vocabulary_id": null | ||
| 185 | }, | 227 | }, | ||
| 186 | { | 228 | { | ||
| 187 | "display_name": "process-computing", | 229 | "display_name": "process-computing", | ||
| 188 | "id": "d07d93c6-53f7-48a4-bded-e205ec0bc2c2", | 230 | "id": "d07d93c6-53f7-48a4-bded-e205ec0bc2c2", | ||
| 189 | "name": "process-computing", | 231 | "name": "process-computing", | ||
| 190 | "state": "active", | 232 | "state": "active", | ||
| 191 | "vocabulary_id": null | 233 | "vocabulary_id": null | ||
| 192 | }, | 234 | }, | ||
| 193 | { | 235 | { | ||
| 194 | "display_name": "svaldez", | 236 | "display_name": "svaldez", | ||
| 195 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 237 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
| 196 | "name": "svaldez", | 238 | "name": "svaldez", | ||
| 197 | "state": "active", | 239 | "state": "active", | ||
| 198 | "vocabulary_id": null | 240 | "vocabulary_id": null | ||
| 199 | } | 241 | } | ||
| 200 | ], | 242 | ], | ||
| 201 | "title": "An evolutionary algorithm of linear complexity: | 243 | "title": "An evolutionary algorithm of linear complexity: | ||
| 202 | application to training of deep neural networks", | 244 | application to training of deep neural networks", | ||
| 203 | "type": "dataset", | 245 | "type": "dataset", | ||
| 204 | "url": | 246 | "url": | ||
| 205 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:70eg2SAEIzsC", | 247 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:70eg2SAEIzsC", | ||
| 206 | "version": null | 248 | "version": null | ||
| 207 | } | 249 | } |
