Cambios
En el instante 11 de octubre de 2025, 1:23:40 UTC,
-
Añadido recurso Robust parameter estimation of a PEMFC via optimization based on probabilistic model building a Robust parameter estimation of a PEMFC via optimization based on probabilistic model building
f | 1 | { | f | 1 | { |
2 | "author": "L Blanco-Cocom, S Botello-Rionda, LC Ordo\u00f1ez, SI | 2 | "author": "L Blanco-Cocom, S Botello-Rionda, LC Ordo\u00f1ez, SI | ||
3 | Valdez", | 3 | Valdez", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "Publicaci\u00f3n", | 8 | "key": "Publicaci\u00f3n", | ||
9 | "value": "Revista" | 9 | "value": "Revista" | ||
10 | }, | 10 | }, | ||
11 | { | 11 | { | ||
12 | "key": "Tipo", | 12 | "key": "Tipo", | ||
13 | "value": "Publicaci\u00f3n" | 13 | "value": "Publicaci\u00f3n" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "groups": [ | 16 | "groups": [ | ||
17 | { | 17 | { | ||
18 | "description": "Este grupo integra las publicaciones | 18 | "description": "Este grupo integra las publicaciones | ||
19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
21 | presentados en congresos nacionales e internacionales, manuscritos en | 21 | presentados en congresos nacionales e internacionales, manuscritos en | ||
22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
27 | "display_name": "Publicaciones", | 27 | "display_name": "Publicaciones", | ||
28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
29 | "image_display_url": "", | 29 | "image_display_url": "", | ||
30 | "name": "publicaciones", | 30 | "name": "publicaciones", | ||
31 | "title": "Publicaciones" | 31 | "title": "Publicaciones" | ||
32 | } | 32 | } | ||
33 | ], | 33 | ], | ||
34 | "id": "7da8a8bb-180c-4366-b347-a66d370da189", | 34 | "id": "7da8a8bb-180c-4366-b347-a66d370da189", | ||
35 | "isopen": false, | 35 | "isopen": false, | ||
36 | "license_id": null, | 36 | "license_id": null, | ||
37 | "license_title": null, | 37 | "license_title": null, | ||
38 | "maintainer": null, | 38 | "maintainer": null, | ||
39 | "maintainer_email": null, | 39 | "maintainer_email": null, | ||
40 | "metadata_created": "2025-10-11T01:23:39.948841", | 40 | "metadata_created": "2025-10-11T01:23:39.948841", | ||
n | 41 | "metadata_modified": "2025-10-11T01:23:39.948848", | n | 41 | "metadata_modified": "2025-10-11T01:23:40.585420", |
42 | "name": | 42 | "name": | ||
43 | -pemfc-via-optimization-based-on-probabilistic-model-bu-4386c4b74814", | 43 | -pemfc-via-optimization-based-on-probabilistic-model-bu-4386c4b74814", | ||
44 | "notes": "Recent developments in maintenance modelling fuelled by | 44 | "notes": "Recent developments in maintenance modelling fuelled by | ||
45 | data-based approaches such as machine learning (ML), have enabled a | 45 | data-based approaches such as machine learning (ML), have enabled a | ||
46 | broad range of applications. In the automotive industry, ensuring the | 46 | broad range of applications. In the automotive industry, ensuring the | ||
47 | functional safety over the product life cycle while limiting | 47 | functional safety over the product life cycle while limiting | ||
48 | maintenance costs has become a major challenge. One crucial approach | 48 | maintenance costs has become a major challenge. One crucial approach | ||
49 | to achieve this, is predictive maintenance (PdM). Since modern | 49 | to achieve this, is predictive maintenance (PdM). Since modern | ||
50 | vehicles come with an enormous amount of operating data, ML is an | 50 | vehicles come with an enormous amount of operating data, ML is an | ||
51 | ideal candidate for PdM. While PdM and ML for automotive systems have | 51 | ideal candidate for PdM. While PdM and ML for automotive systems have | ||
52 | both been covered in numerous review papers, there is no current | 52 | both been covered in numerous review papers, there is no current | ||
53 | survey on ML-based PdM for automotive systems. The number of | 53 | survey on ML-based PdM for automotive systems. The number of | ||
54 | publications in this field is increasing \u2014 underlining the need | 54 | publications in this field is increasing \u2014 underlining the need | ||
55 | for such a survey. Consequently, we survey and categorize papers and | 55 | for such a survey. Consequently, we survey and categorize papers and | ||
56 | analyse them from an application and ML perspective. Following that, | 56 | analyse them from an application and ML perspective. Following that, | ||
57 | we identify open challenges and discuss possible research directions. | 57 | we identify open challenges and discuss possible research directions. | ||
58 | We conclude that (a) publicly available data would lead to a boost in | 58 | We conclude that (a) publicly available data would lead to a boost in | ||
59 | research activities, (b) the majority of papers rely on supervised | 59 | research activities, (b) the majority of papers rely on supervised | ||
60 | methods requiring labelled data, (c) combining multiple data sources | 60 | methods requiring labelled data, (c) combining multiple data sources | ||
61 | can improve accuracies, (d) the use of deep learning methods will | 61 | can improve accuracies, (d) the use of deep learning methods will | ||
62 | further increase but requires efficient and interpretable methods and | 62 | further increase but requires efficient and interpretable methods and | ||
63 | the availability of large amounts of (labelled) data.", | 63 | the availability of large amounts of (labelled) data.", | ||
n | 64 | "num_resources": 0, | n | 64 | "num_resources": 1, |
65 | "num_tags": 15, | 65 | "num_tags": 15, | ||
66 | "organization": { | 66 | "organization": { | ||
67 | "approval_status": "approved", | 67 | "approval_status": "approved", | ||
68 | "created": "2022-05-19T00:10:30.480393", | 68 | "created": "2022-05-19T00:10:30.480393", | ||
69 | "description": "Observatorio Metropolitano CentroGeo", | 69 | "description": "Observatorio Metropolitano CentroGeo", | ||
70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
71 | "image_url": | 71 | "image_url": | ||
72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "observatorio-metropolitano-centrogeo", | 74 | "name": "observatorio-metropolitano-centrogeo", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "Observatorio Metropolitano CentroGeo", | 76 | "title": "Observatorio Metropolitano CentroGeo", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2025-10-11T01:23:40.631847", | ||||
88 | "datastore_active": false, | ||||
89 | "description": "Recent developments in maintenance modelling | ||||
90 | fuelled by data-based approaches such as machine learning (ML), have | ||||
91 | enabled a broad range of applications. In the automotive industry, | ||||
92 | ensuring the functional safety over the product life cycle while | ||||
93 | limiting maintenance costs has become a major challenge. One crucial | ||||
94 | approach to achieve this, is predictive maintenance (PdM). Since | ||||
95 | modern vehicles come with an enormous amount of operating data, ML is | ||||
96 | an ideal candidate for PdM. While PdM and ML for automotive systems | ||||
97 | have both been covered in numerous review papers, there is no current | ||||
98 | survey on ML-based PdM for automotive systems. The number of | ||||
99 | publications in this field is increasing \u2014 underlining the need | ||||
100 | for such a survey. Consequently, we survey and categorize papers and | ||||
101 | analyse them from an application and ML perspective. Following that, | ||||
102 | we identify open challenges and discuss possible research directions. | ||||
103 | We conclude that (a) publicly available data would lead to a boost in | ||||
104 | research activities, (b) the majority of papers rely on supervised | ||||
105 | methods requiring labelled data, (c) combining multiple data sources | ||||
106 | can improve accuracies, (d) the use of deep learning methods will | ||||
107 | further increase but requires efficient and interpretable methods and | ||||
108 | the availability of large amounts of (labelled) data.", | ||||
109 | "format": "HTML", | ||||
110 | "hash": "", | ||||
111 | "id": "d89900f1-e032-4aab-803f-39d387106ff0", | ||||
112 | "last_modified": null, | ||||
113 | "metadata_modified": "2025-10-11T01:23:40.590185", | ||||
114 | "mimetype": null, | ||||
115 | "mimetype_inner": null, | ||||
116 | "name": "Robust parameter estimation of a PEMFC via optimization | ||||
117 | based on probabilistic model building", | ||||
118 | "package_id": "7da8a8bb-180c-4366-b347-a66d370da189", | ||||
119 | "position": 0, | ||||
120 | "resource_type": null, | ||||
121 | "size": null, | ||||
122 | "state": "active", | ||||
123 | "url": "https://doi.org/10.1016/j.matcom.2020.12.021", | ||||
124 | "url_type": null | ||||
125 | } | ||||
126 | ], | ||||
84 | "state": "active", | 127 | "state": "active", | ||
85 | "tags": [ | 128 | "tags": [ | ||
86 | { | 129 | { | ||
87 | "display_name": "artificial-intelligence", | 130 | "display_name": "artificial-intelligence", | ||
88 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 131 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
89 | "name": "artificial-intelligence", | 132 | "name": "artificial-intelligence", | ||
90 | "state": "active", | 133 | "state": "active", | ||
91 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
92 | }, | 135 | }, | ||
93 | { | 136 | { | ||
94 | "display_name": "automotive-industry", | 137 | "display_name": "automotive-industry", | ||
95 | "id": "4c868394-39ed-42e8-a440-d3035db82194", | 138 | "id": "4c868394-39ed-42e8-a440-d3035db82194", | ||
96 | "name": "automotive-industry", | 139 | "name": "automotive-industry", | ||
97 | "state": "active", | 140 | "state": "active", | ||
98 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
99 | }, | 142 | }, | ||
100 | { | 143 | { | ||
101 | "display_name": "categorization", | 144 | "display_name": "categorization", | ||
102 | "id": "797c5a0f-7f63-467d-bcdb-44259992b77d", | 145 | "id": "797c5a0f-7f63-467d-bcdb-44259992b77d", | ||
103 | "name": "categorization", | 146 | "name": "categorization", | ||
104 | "state": "active", | 147 | "state": "active", | ||
105 | "vocabulary_id": null | 148 | "vocabulary_id": null | ||
106 | }, | 149 | }, | ||
107 | { | 150 | { | ||
108 | "display_name": "computer-science", | 151 | "display_name": "computer-science", | ||
109 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 152 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
110 | "name": "computer-science", | 153 | "name": "computer-science", | ||
111 | "state": "active", | 154 | "state": "active", | ||
112 | "vocabulary_id": null | 155 | "vocabulary_id": null | ||
113 | }, | 156 | }, | ||
114 | { | 157 | { | ||
115 | "display_name": "engineering", | 158 | "display_name": "engineering", | ||
116 | "id": "59570448-4524-44a9-b14d-5e8fa3f096a7", | 159 | "id": "59570448-4524-44a9-b14d-5e8fa3f096a7", | ||
117 | "name": "engineering", | 160 | "name": "engineering", | ||
118 | "state": "active", | 161 | "state": "active", | ||
119 | "vocabulary_id": null | 162 | "vocabulary_id": null | ||
120 | }, | 163 | }, | ||
121 | { | 164 | { | ||
122 | "display_name": "field-mathematics", | 165 | "display_name": "field-mathematics", | ||
123 | "id": "c97c4d13-fda3-4000-8e39-c0c3f672972c", | 166 | "id": "c97c4d13-fda3-4000-8e39-c0c3f672972c", | ||
124 | "name": "field-mathematics", | 167 | "name": "field-mathematics", | ||
125 | "state": "active", | 168 | "state": "active", | ||
126 | "vocabulary_id": null | 169 | "vocabulary_id": null | ||
127 | }, | 170 | }, | ||
128 | { | 171 | { | ||
129 | "display_name": "limiting", | 172 | "display_name": "limiting", | ||
130 | "id": "1d2fc01c-3116-4d2b-9492-2e35009254a8", | 173 | "id": "1d2fc01c-3116-4d2b-9492-2e35009254a8", | ||
131 | "name": "limiting", | 174 | "name": "limiting", | ||
132 | "state": "active", | 175 | "state": "active", | ||
133 | "vocabulary_id": null | 176 | "vocabulary_id": null | ||
134 | }, | 177 | }, | ||
135 | { | 178 | { | ||
136 | "display_name": "machine-learning", | 179 | "display_name": "machine-learning", | ||
137 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | 180 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | ||
138 | "name": "machine-learning", | 181 | "name": "machine-learning", | ||
139 | "state": "active", | 182 | "state": "active", | ||
140 | "vocabulary_id": null | 183 | "vocabulary_id": null | ||
141 | }, | 184 | }, | ||
142 | { | 185 | { | ||
143 | "display_name": "manufacturing-engineering", | 186 | "display_name": "manufacturing-engineering", | ||
144 | "id": "a386dc3e-43ed-48bc-92d2-aadf29ebc845", | 187 | "id": "a386dc3e-43ed-48bc-92d2-aadf29ebc845", | ||
145 | "name": "manufacturing-engineering", | 188 | "name": "manufacturing-engineering", | ||
146 | "state": "active", | 189 | "state": "active", | ||
147 | "vocabulary_id": null | 190 | "vocabulary_id": null | ||
148 | }, | 191 | }, | ||
149 | { | 192 | { | ||
150 | "display_name": "new-product-development", | 193 | "display_name": "new-product-development", | ||
151 | "id": "1509533a-226a-4d2b-b6ff-bd508108d038", | 194 | "id": "1509533a-226a-4d2b-b6ff-bd508108d038", | ||
152 | "name": "new-product-development", | 195 | "name": "new-product-development", | ||
153 | "state": "active", | 196 | "state": "active", | ||
154 | "vocabulary_id": null | 197 | "vocabulary_id": null | ||
155 | }, | 198 | }, | ||
156 | { | 199 | { | ||
157 | "display_name": "overall-equipment-effectiveness", | 200 | "display_name": "overall-equipment-effectiveness", | ||
158 | "id": "3dffdceb-3e8f-4ade-a53b-cbf51663e25e", | 201 | "id": "3dffdceb-3e8f-4ade-a53b-cbf51663e25e", | ||
159 | "name": "overall-equipment-effectiveness", | 202 | "name": "overall-equipment-effectiveness", | ||
160 | "state": "active", | 203 | "state": "active", | ||
161 | "vocabulary_id": null | 204 | "vocabulary_id": null | ||
162 | }, | 205 | }, | ||
163 | { | 206 | { | ||
164 | "display_name": "predictive-maintenance", | 207 | "display_name": "predictive-maintenance", | ||
165 | "id": "c6382a89-505e-4de4-9159-6d0adfb50b45", | 208 | "id": "c6382a89-505e-4de4-9159-6d0adfb50b45", | ||
166 | "name": "predictive-maintenance", | 209 | "name": "predictive-maintenance", | ||
167 | "state": "active", | 210 | "state": "active", | ||
168 | "vocabulary_id": null | 211 | "vocabulary_id": null | ||
169 | }, | 212 | }, | ||
170 | { | 213 | { | ||
171 | "display_name": "product-mathematics", | 214 | "display_name": "product-mathematics", | ||
172 | "id": "e2b11b48-04c0-49ae-92db-a5624a393165", | 215 | "id": "e2b11b48-04c0-49ae-92db-a5624a393165", | ||
173 | "name": "product-mathematics", | 216 | "name": "product-mathematics", | ||
174 | "state": "active", | 217 | "state": "active", | ||
175 | "vocabulary_id": null | 218 | "vocabulary_id": null | ||
176 | }, | 219 | }, | ||
177 | { | 220 | { | ||
178 | "display_name": "risk-analysis-engineering", | 221 | "display_name": "risk-analysis-engineering", | ||
179 | "id": "e5047280-db68-44b8-a5c6-96c3d7a3e6c2", | 222 | "id": "e5047280-db68-44b8-a5c6-96c3d7a3e6c2", | ||
180 | "name": "risk-analysis-engineering", | 223 | "name": "risk-analysis-engineering", | ||
181 | "state": "active", | 224 | "state": "active", | ||
182 | "vocabulary_id": null | 225 | "vocabulary_id": null | ||
183 | }, | 226 | }, | ||
184 | { | 227 | { | ||
185 | "display_name": "systems-engineering", | 228 | "display_name": "systems-engineering", | ||
186 | "id": "cbc4f68a-714a-40db-8d81-6ad5a9548a2e", | 229 | "id": "cbc4f68a-714a-40db-8d81-6ad5a9548a2e", | ||
187 | "name": "systems-engineering", | 230 | "name": "systems-engineering", | ||
188 | "state": "active", | 231 | "state": "active", | ||
189 | "vocabulary_id": null | 232 | "vocabulary_id": null | ||
190 | } | 233 | } | ||
191 | ], | 234 | ], | ||
192 | "title": "Robust parameter estimation of a PEMFC via optimization | 235 | "title": "Robust parameter estimation of a PEMFC via optimization | ||
193 | based on probabilistic model building", | 236 | based on probabilistic model building", | ||
194 | "type": "dataset", | 237 | "type": "dataset", | ||
195 | "url": "https://doi.org/10.1016/j.matcom.2020.12.021", | 238 | "url": "https://doi.org/10.1016/j.matcom.2020.12.021", | ||
196 | "version": null | 239 | "version": null | ||
197 | } | 240 | } |