Cambios
En el instante 21 de octubre de 2025, 9:01:46 UTC,
-
Añadido recurso A two-stage mono-and multi-objective method for the optimization of general UPS parallel manipulators a A two-stage mono-and multi-objective method for the optimization of general UPS parallel manipulators
f | 1 | { | f | 1 | { |
2 | "author": "A R\u00edos, EE Hern\u00e1ndez, SI Valdez", | 2 | "author": "A R\u00edos, EE Hern\u00e1ndez, SI Valdez", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
8 | "value": "2021" | 8 | "value": "2021" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "DOI", | 11 | "key": "DOI", | ||
12 | "value": "https://doi.org/10.3390/math9050543" | 12 | "value": "https://doi.org/10.3390/math9050543" | ||
13 | }, | 13 | }, | ||
14 | { | 14 | { | ||
15 | "key": "Google Scholar URL", | 15 | "key": "Google Scholar URL", | ||
16 | "value": | 16 | "value": | ||
17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:uLbwQdceFCQC" | 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:uLbwQdceFCQC" | ||
18 | }, | 18 | }, | ||
19 | { | 19 | { | ||
20 | "key": "Identificador hash", | 20 | "key": "Identificador hash", | ||
21 | "value": "20c6ce6076d8" | 21 | "value": "20c6ce6076d8" | ||
22 | }, | 22 | }, | ||
23 | { | 23 | { | ||
24 | "key": "Lugar de publicaci\u00f3n", | 24 | "key": "Lugar de publicaci\u00f3n", | ||
25 | "value": "Mathematics 9 (5), 543, 2021" | 25 | "value": "Mathematics 9 (5), 543, 2021" | ||
26 | }, | 26 | }, | ||
27 | { | 27 | { | ||
28 | "key": "Tipo", | 28 | "key": "Tipo", | ||
29 | "value": "Publicaci\u00f3n" | 29 | "value": "Publicaci\u00f3n" | ||
30 | }, | 30 | }, | ||
31 | { | 31 | { | ||
32 | "key": "Tipo de publicaci\u00f3n", | 32 | "key": "Tipo de publicaci\u00f3n", | ||
33 | "value": "Revista" | 33 | "value": "Revista" | ||
34 | }, | 34 | }, | ||
35 | { | 35 | { | ||
36 | "key": "URL directo", | 36 | "key": "URL directo", | ||
37 | "value": "https://www.mdpi.com/2227-7390/9/5/543" | 37 | "value": "https://www.mdpi.com/2227-7390/9/5/543" | ||
38 | } | 38 | } | ||
39 | ], | 39 | ], | ||
40 | "groups": [ | 40 | "groups": [ | ||
41 | { | 41 | { | ||
42 | "description": "", | 42 | "description": "", | ||
43 | "display_name": "Publicaciones", | 43 | "display_name": "Publicaciones", | ||
44 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 44 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
45 | "image_display_url": "", | 45 | "image_display_url": "", | ||
46 | "name": "publicaciones", | 46 | "name": "publicaciones", | ||
47 | "title": "Publicaciones" | 47 | "title": "Publicaciones" | ||
48 | } | 48 | } | ||
49 | ], | 49 | ], | ||
50 | "id": "3e419269-b661-421a-8ea5-302dae65fd05", | 50 | "id": "3e419269-b661-421a-8ea5-302dae65fd05", | ||
51 | "isopen": false, | 51 | "isopen": false, | ||
52 | "license_id": null, | 52 | "license_id": null, | ||
53 | "license_title": null, | 53 | "license_title": null, | ||
54 | "maintainer": null, | 54 | "maintainer": null, | ||
55 | "maintainer_email": null, | 55 | "maintainer_email": null, | ||
56 | "metadata_created": "2025-10-21T09:01:46.020155", | 56 | "metadata_created": "2025-10-21T09:01:46.020155", | ||
n | 57 | "metadata_modified": "2025-10-21T09:01:46.020166", | n | 57 | "metadata_modified": "2025-10-21T09:01:46.724971", |
58 | "name": "20c6ce6076d8", | 58 | "name": "20c6ce6076d8", | ||
59 | "notes": "This paper introduces a two-stage method based on | 59 | "notes": "This paper introduces a two-stage method based on | ||
60 | bio-inspired algorithms for the design optimization of a class of | 60 | bio-inspired algorithms for the design optimization of a class of | ||
61 | general Stewart platforms. The first stage performs a mono-objective | 61 | general Stewart platforms. The first stage performs a mono-objective | ||
62 | optimization in order to reach, with sufficient dexterity, a regular | 62 | optimization in order to reach, with sufficient dexterity, a regular | ||
63 | target workspace while minimizing the elements\u2019 lengths. For this | 63 | target workspace while minimizing the elements\u2019 lengths. For this | ||
64 | optimization problem, we compare three bio-inspired algorithms: the | 64 | optimization problem, we compare three bio-inspired algorithms: the | ||
65 | Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the | 65 | Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the | ||
66 | Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The | 66 | Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The | ||
67 | second stage looks for the most suitable gains of a Proportional | 67 | second stage looks for the most suitable gains of a Proportional | ||
68 | Integral Derivative (PID) control via the minimization of two | 68 | Integral Derivative (PID) control via the minimization of two | ||
69 | conflicting objectives: one based on energy consumption and the | 69 | conflicting objectives: one based on energy consumption and the | ||
70 | tracking error of a target trajectory. To this effect, we compare two | 70 | tracking error of a target trajectory. To this effect, we compare two | ||
71 | multi-objective algorithms: the Multiobjective Evolutionary Algorithm | 71 | multi-objective algorithms: the Multiobjective Evolutionary Algorithm | ||
72 | based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic | 72 | based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic | ||
73 | Algorithm-III (NSGA-III). The main contributions lie in the | 73 | Algorithm-III (NSGA-III). The main contributions lie in the | ||
74 | optimization model, the proposal of a two-stage optimization method, | 74 | optimization model, the proposal of a two-stage optimization method, | ||
75 | and the findings of the performance of different bio-inspired | 75 | and the findings of the performance of different bio-inspired | ||
76 | algorithms for each stage. Furthermore, we show optimized designs | 76 | algorithms for each stage. Furthermore, we show optimized designs | ||
77 | delivered by the proposed method and provide directions for the | 77 | delivered by the proposed method and provide directions for the | ||
78 | best-performing algorithms through performance metrics and statistical | 78 | best-performing algorithms through performance metrics and statistical | ||
79 | hypothesis tests.", | 79 | hypothesis tests.", | ||
n | 80 | "num_resources": 0, | n | 80 | "num_resources": 1, |
81 | "num_tags": 14, | 81 | "num_tags": 14, | ||
82 | "organization": { | 82 | "organization": { | ||
83 | "approval_status": "approved", | 83 | "approval_status": "approved", | ||
84 | "created": "2022-05-19T00:10:30.480393", | 84 | "created": "2022-05-19T00:10:30.480393", | ||
85 | "description": "Observatorio Metropolitano CentroGeo", | 85 | "description": "Observatorio Metropolitano CentroGeo", | ||
86 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 86 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
87 | "image_url": | 87 | "image_url": | ||
88 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 88 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
89 | "is_organization": true, | 89 | "is_organization": true, | ||
90 | "name": "observatorio-metropolitano-centrogeo", | 90 | "name": "observatorio-metropolitano-centrogeo", | ||
91 | "state": "active", | 91 | "state": "active", | ||
92 | "title": "Observatorio Metropolitano CentroGeo", | 92 | "title": "Observatorio Metropolitano CentroGeo", | ||
93 | "type": "organization" | 93 | "type": "organization" | ||
94 | }, | 94 | }, | ||
95 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 95 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
96 | "private": false, | 96 | "private": false, | ||
97 | "relationships_as_object": [], | 97 | "relationships_as_object": [], | ||
98 | "relationships_as_subject": [], | 98 | "relationships_as_subject": [], | ||
t | 99 | "resources": [], | t | 99 | "resources": [ |
100 | { | ||||
101 | "cache_last_updated": null, | ||||
102 | "cache_url": null, | ||||
103 | "created": "2025-10-21T09:01:46.771511", | ||||
104 | "datastore_active": false, | ||||
105 | "description": "This paper introduces a two-stage method based | ||||
106 | on bio-inspired algorithms for the design optimization of a class of | ||||
107 | general Stewart platforms. The first stage performs a mono-objective | ||||
108 | optimization in order to reach, with sufficient dexterity, a regular | ||||
109 | target workspace while minimizing the elements\u2019 lengths. For this | ||||
110 | optimization problem, we compare three bio-inspired algorithms: the | ||||
111 | Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the | ||||
112 | Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The | ||||
113 | second stage looks for the most suitable gains of a Proportional | ||||
114 | Integral Derivative (PID) control via the minimization of two | ||||
115 | conflicting objectives: one based on energy consumption and the | ||||
116 | tracking error of a target trajectory. To this effect, we compare two | ||||
117 | multi-objective algorithms: the Multiobjective Evolutionary Algorithm | ||||
118 | based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic | ||||
119 | Algorithm-III (NSGA-III). The main contributions lie in the | ||||
120 | optimization model, the proposal of a two-stage optimization method, | ||||
121 | and the findings of the performance of different bio-inspired | ||||
122 | algorithms for each stage. Furthermore, we show optimized designs | ||||
123 | delivered by the proposed method and provide directions for the | ||||
124 | best-performing algorithms through performance metrics and statistical | ||||
125 | hypothesis tests.", | ||||
126 | "format": "HTML", | ||||
127 | "hash": "", | ||||
128 | "id": "b06d077f-5ac0-40ae-a6f3-a22c65ee9e99", | ||||
129 | "last_modified": null, | ||||
130 | "metadata_modified": "2025-10-21T09:01:46.730748", | ||||
131 | "mimetype": null, | ||||
132 | "mimetype_inner": null, | ||||
133 | "name": "A two-stage mono-and multi-objective method for the | ||||
134 | optimization of general UPS parallel manipulators", | ||||
135 | "package_id": "3e419269-b661-421a-8ea5-302dae65fd05", | ||||
136 | "position": 0, | ||||
137 | "resource_type": null, | ||||
138 | "size": null, | ||||
139 | "state": "active", | ||||
140 | "url": | ||||
141 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:uLbwQdceFCQC", | ||||
142 | "url_type": null | ||||
143 | } | ||||
144 | ], | ||||
100 | "state": "active", | 145 | "state": "active", | ||
101 | "tags": [ | 146 | "tags": [ | ||
102 | { | 147 | { | ||
103 | "display_name": "2021", | 148 | "display_name": "2021", | ||
104 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | 149 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | ||
105 | "name": "2021", | 150 | "name": "2021", | ||
106 | "state": "active", | 151 | "state": "active", | ||
107 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
108 | }, | 153 | }, | ||
109 | { | 154 | { | ||
110 | "display_name": "algorithm", | 155 | "display_name": "algorithm", | ||
111 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 156 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
112 | "name": "algorithm", | 157 | "name": "algorithm", | ||
113 | "state": "active", | 158 | "state": "active", | ||
114 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
115 | }, | 160 | }, | ||
116 | { | 161 | { | ||
117 | "display_name": "computer-science", | 162 | "display_name": "computer-science", | ||
118 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 163 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
119 | "name": "computer-science", | 164 | "name": "computer-science", | ||
120 | "state": "active", | 165 | "state": "active", | ||
121 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
122 | }, | 167 | }, | ||
123 | { | 168 | { | ||
124 | "display_name": "decomposition", | 169 | "display_name": "decomposition", | ||
125 | "id": "dc0e2b55-5304-4a76-b334-c02c205f1c63", | 170 | "id": "dc0e2b55-5304-4a76-b334-c02c205f1c63", | ||
126 | "name": "decomposition", | 171 | "name": "decomposition", | ||
127 | "state": "active", | 172 | "state": "active", | ||
128 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
129 | }, | 174 | }, | ||
130 | { | 175 | { | ||
131 | "display_name": "derivative-free-optimization", | 176 | "display_name": "derivative-free-optimization", | ||
132 | "id": "d95c8f01-048f-4a46-900b-eceaf60976a4", | 177 | "id": "d95c8f01-048f-4a46-900b-eceaf60976a4", | ||
133 | "name": "derivative-free-optimization", | 178 | "name": "derivative-free-optimization", | ||
134 | "state": "active", | 179 | "state": "active", | ||
135 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
136 | }, | 181 | }, | ||
137 | { | 182 | { | ||
138 | "display_name": "evolutionary-algorithm", | 183 | "display_name": "evolutionary-algorithm", | ||
139 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | 184 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | ||
140 | "name": "evolutionary-algorithm", | 185 | "name": "evolutionary-algorithm", | ||
141 | "state": "active", | 186 | "state": "active", | ||
142 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
143 | }, | 188 | }, | ||
144 | { | 189 | { | ||
145 | "display_name": "genetic-algorithm", | 190 | "display_name": "genetic-algorithm", | ||
146 | "id": "6a61702d-b718-409f-afdd-cdcf6ff05799", | 191 | "id": "6a61702d-b718-409f-afdd-cdcf6ff05799", | ||
147 | "name": "genetic-algorithm", | 192 | "name": "genetic-algorithm", | ||
148 | "state": "active", | 193 | "state": "active", | ||
149 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
150 | }, | 195 | }, | ||
151 | { | 196 | { | ||
152 | "display_name": "mathematical-optimization", | 197 | "display_name": "mathematical-optimization", | ||
153 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 198 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
154 | "name": "mathematical-optimization", | 199 | "name": "mathematical-optimization", | ||
155 | "state": "active", | 200 | "state": "active", | ||
156 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
157 | }, | 202 | }, | ||
158 | { | 203 | { | ||
159 | "display_name": "meta-optimization", | 204 | "display_name": "meta-optimization", | ||
160 | "id": "87f29f48-4841-403e-8c53-4f53699b83bf", | 205 | "id": "87f29f48-4841-403e-8c53-4f53699b83bf", | ||
161 | "name": "meta-optimization", | 206 | "name": "meta-optimization", | ||
162 | "state": "active", | 207 | "state": "active", | ||
163 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
164 | }, | 209 | }, | ||
165 | { | 210 | { | ||
166 | "display_name": "multi-objective-optimization", | 211 | "display_name": "multi-objective-optimization", | ||
167 | "id": "028254bd-4fdf-4157-a6c4-850397abd03d", | 212 | "id": "028254bd-4fdf-4157-a6c4-850397abd03d", | ||
168 | "name": "multi-objective-optimization", | 213 | "name": "multi-objective-optimization", | ||
169 | "state": "active", | 214 | "state": "active", | ||
170 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
171 | }, | 216 | }, | ||
172 | { | 217 | { | ||
173 | "display_name": "optimization-problem", | 218 | "display_name": "optimization-problem", | ||
174 | "id": "98d1c97f-9280-4bc4-babd-2b1010d9e73f", | 219 | "id": "98d1c97f-9280-4bc4-babd-2b1010d9e73f", | ||
175 | "name": "optimization-problem", | 220 | "name": "optimization-problem", | ||
176 | "state": "active", | 221 | "state": "active", | ||
177 | "vocabulary_id": null | 222 | "vocabulary_id": null | ||
178 | }, | 223 | }, | ||
179 | { | 224 | { | ||
180 | "display_name": "particle-swarm-optimization", | 225 | "display_name": "particle-swarm-optimization", | ||
181 | "id": "e10be4b1-1c48-463e-91df-95926219119c", | 226 | "id": "e10be4b1-1c48-463e-91df-95926219119c", | ||
182 | "name": "particle-swarm-optimization", | 227 | "name": "particle-swarm-optimization", | ||
183 | "state": "active", | 228 | "state": "active", | ||
184 | "vocabulary_id": null | 229 | "vocabulary_id": null | ||
185 | }, | 230 | }, | ||
186 | { | 231 | { | ||
187 | "display_name": "sorting", | 232 | "display_name": "sorting", | ||
188 | "id": "eb10811b-1fd0-49fc-9dc8-76235283f859", | 233 | "id": "eb10811b-1fd0-49fc-9dc8-76235283f859", | ||
189 | "name": "sorting", | 234 | "name": "sorting", | ||
190 | "state": "active", | 235 | "state": "active", | ||
191 | "vocabulary_id": null | 236 | "vocabulary_id": null | ||
192 | }, | 237 | }, | ||
193 | { | 238 | { | ||
194 | "display_name": "svaldez", | 239 | "display_name": "svaldez", | ||
195 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 240 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
196 | "name": "svaldez", | 241 | "name": "svaldez", | ||
197 | "state": "active", | 242 | "state": "active", | ||
198 | "vocabulary_id": null | 243 | "vocabulary_id": null | ||
199 | } | 244 | } | ||
200 | ], | 245 | ], | ||
201 | "title": "A two-stage mono-and multi-objective method for the | 246 | "title": "A two-stage mono-and multi-objective method for the | ||
202 | optimization of general UPS parallel manipulators", | 247 | optimization of general UPS parallel manipulators", | ||
203 | "type": "dataset", | 248 | "type": "dataset", | ||
204 | "url": | 249 | "url": | ||
205 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:uLbwQdceFCQC", | 250 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:uLbwQdceFCQC", | ||
206 | "version": null | 251 | "version": null | ||
207 | } | 252 | } |