Cambios
En el instante 10 de octubre de 2025, 7:19:45 UTC,
-
Añadido recurso Graph Processing Frameworks a Graph Processing Frameworks
f | 1 | { | f | 1 | { |
2 | "author": "A Diaz-Perez, A Garcia-Robledo, JL Gonzalez-Compean", | 2 | "author": "A Diaz-Perez, A Garcia-Robledo, JL Gonzalez-Compean", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Cap\u00edtulo" | 8 | "value": "Cap\u00edtulo" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | 33 | "id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-10T07:19:44.700180", | 39 | "metadata_created": "2025-10-10T07:19:44.700180", | ||
n | 40 | "metadata_modified": "2025-10-10T07:19:44.700186", | n | 40 | "metadata_modified": "2025-10-10T07:19:45.164788", |
41 | "name": "graph-processing-frameworks-ad71c87a39c0", | 41 | "name": "graph-processing-frameworks-ad71c87a39c0", | ||
42 | "notes": "This chapter provides a comprehensive overview of graph | 42 | "notes": "This chapter provides a comprehensive overview of graph | ||
43 | processing frameworks (GPFs)\u2014software systems designed to | 43 | processing frameworks (GPFs)\u2014software systems designed to | ||
44 | efficiently analyze and compute on large-scale graph data. GPFs enable | 44 | efficiently analyze and compute on large-scale graph data. GPFs enable | ||
45 | the representation of entities as vertices and their relationships as | 45 | the representation of entities as vertices and their relationships as | ||
46 | edges, offering APIs and computation models that abstract low-level | 46 | edges, offering APIs and computation models that abstract low-level | ||
47 | parallelization details while supporting diverse applications such as | 47 | parallelization details while supporting diverse applications such as | ||
48 | social network analysis, biological systems, and fraud detection. The | 48 | social network analysis, biological systems, and fraud detection. The | ||
49 | authors classify more than twenty notable GPFs along four key | 49 | authors classify more than twenty notable GPFs along four key | ||
50 | dimensions: target platform (shared, distributed, or hybrid memory), | 50 | dimensions: target platform (shared, distributed, or hybrid memory), | ||
51 | computation model (MapReduce, BSP, GAS, GSA, etc.), processing | 51 | computation model (MapReduce, BSP, GAS, GSA, etc.), processing | ||
52 | approach (vertex-, edge-, subgraph-, or neighborhood-centric), and | 52 | approach (vertex-, edge-, subgraph-, or neighborhood-centric), and | ||
53 | communication model (message passing, shared memory, or dataflow). | 53 | communication model (message passing, shared memory, or dataflow). | ||
54 | Detailed discussions include classical frameworks like Pregel, | 54 | Detailed discussions include classical frameworks like Pregel, | ||
55 | GraphLab, Giraph, and GraphX, as well as recent innovations leveraging | 55 | GraphLab, Giraph, and GraphX, as well as recent innovations leveraging | ||
56 | GPU, Hybrid Memory Cube (HMC), and ReRAM architectures (e.g., GraphH, | 56 | GPU, Hybrid Memory Cube (HMC), and ReRAM architectures (e.g., GraphH, | ||
57 | GraphP, GraphR). The chapter also illustrates a practical example of | 57 | GraphP, GraphR). The chapter also illustrates a practical example of | ||
58 | computing the degree distribution of a large social network using the | 58 | computing the degree distribution of a large social network using the | ||
59 | Apache Flink Gelly API, demonstrating scalable parallel execution. In | 59 | Apache Flink Gelly API, demonstrating scalable parallel execution. In | ||
60 | closing, the authors identify open challenges in graph partitioning, | 60 | closing, the authors identify open challenges in graph partitioning, | ||
61 | hybrid architectures, benchmarking, and performance evaluation, | 61 | hybrid architectures, benchmarking, and performance evaluation, | ||
62 | emphasizing that efficient parallelization and resource-aware design | 62 | emphasizing that efficient parallelization and resource-aware design | ||
63 | remain central to advancing next-generation graph processing | 63 | remain central to advancing next-generation graph processing | ||
64 | systems.", | 64 | systems.", | ||
n | 65 | "num_resources": 0, | n | 65 | "num_resources": 1, |
66 | "num_tags": 0, | 66 | "num_tags": 0, | ||
67 | "organization": { | 67 | "organization": { | ||
68 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
69 | "created": "2022-05-19T00:10:30.480393", | 69 | "created": "2022-05-19T00:10:30.480393", | ||
70 | "description": "Observatorio Metropolitano CentroGeo", | 70 | "description": "Observatorio Metropolitano CentroGeo", | ||
71 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 71 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
72 | "image_url": | 72 | "image_url": | ||
73 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 73 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
74 | "is_organization": true, | 74 | "is_organization": true, | ||
75 | "name": "observatorio-metropolitano-centrogeo", | 75 | "name": "observatorio-metropolitano-centrogeo", | ||
76 | "state": "active", | 76 | "state": "active", | ||
77 | "title": "Observatorio Metropolitano CentroGeo", | 77 | "title": "Observatorio Metropolitano CentroGeo", | ||
78 | "type": "organization" | 78 | "type": "organization" | ||
79 | }, | 79 | }, | ||
80 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 80 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
81 | "private": false, | 81 | "private": false, | ||
82 | "relationships_as_object": [], | 82 | "relationships_as_object": [], | ||
83 | "relationships_as_subject": [], | 83 | "relationships_as_subject": [], | ||
t | 84 | "resources": [], | t | 84 | "resources": [ |
85 | { | ||||
86 | "cache_last_updated": null, | ||||
87 | "cache_url": null, | ||||
88 | "created": "2025-10-10T07:19:45.183144", | ||||
89 | "datastore_active": false, | ||||
90 | "description": "This chapter provides a comprehensive overview | ||||
91 | of graph processing frameworks (GPFs)\u2014software systems designed | ||||
92 | to efficiently analyze and compute on large-scale graph data. GPFs | ||||
93 | enable the representation of entities as vertices and their | ||||
94 | relationships as edges, offering APIs and computation models that | ||||
95 | abstract low-level parallelization details while supporting diverse | ||||
96 | applications such as social network analysis, biological systems, and | ||||
97 | fraud detection. The authors classify more than twenty notable GPFs | ||||
98 | along four key dimensions: target platform (shared, distributed, or | ||||
99 | hybrid memory), computation model (MapReduce, BSP, GAS, GSA, etc.), | ||||
100 | processing approach (vertex-, edge-, subgraph-, or | ||||
101 | neighborhood-centric), and communication model (message passing, | ||||
102 | shared memory, or dataflow). Detailed discussions include classical | ||||
103 | frameworks like Pregel, GraphLab, Giraph, and GraphX, as well as | ||||
104 | recent innovations leveraging GPU, Hybrid Memory Cube (HMC), and ReRAM | ||||
105 | architectures (e.g., GraphH, GraphP, GraphR). The chapter also | ||||
106 | illustrates a practical example of computing the degree distribution | ||||
107 | of a large social network using the Apache Flink Gelly API, | ||||
108 | demonstrating scalable parallel execution. In closing, the authors | ||||
109 | identify open challenges in graph partitioning, hybrid architectures, | ||||
110 | benchmarking, and performance evaluation, emphasizing that efficient | ||||
111 | parallelization and resource-aware design remain central to advancing | ||||
112 | next-generation graph processing systems.", | ||||
113 | "format": "HTML", | ||||
114 | "hash": "", | ||||
115 | "id": "fc171422-0921-4ca1-9239-f31b4d9ec5d7", | ||||
116 | "last_modified": null, | ||||
117 | "metadata_modified": "2025-10-10T07:19:45.177984", | ||||
118 | "mimetype": null, | ||||
119 | "mimetype_inner": null, | ||||
120 | "name": "Graph Processing Frameworks", | ||||
121 | "package_id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | ||||
122 | "position": 0, | ||||
123 | "resource_type": null, | ||||
124 | "size": null, | ||||
125 | "state": "active", | ||||
126 | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | ||||
127 | "url_type": null | ||||
128 | } | ||||
129 | ], | ||||
85 | "state": "active", | 130 | "state": "active", | ||
86 | "tags": [], | 131 | "tags": [], | ||
87 | "title": "Graph Processing Frameworks", | 132 | "title": "Graph Processing Frameworks", | ||
88 | "type": "dataset", | 133 | "type": "dataset", | ||
89 | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | 134 | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | ||
90 | "version": null | 135 | "version": null | ||
91 | } | 136 | } |