Cambios
En el instante 11 de octubre de 2025, 1:22:52 UTC,
-
Añadido recurso The directed multi-objective estimation distribution algorithm (D-MOEDA) a The directed multi-objective estimation distribution algorithm (D-MOEDA)
f | 1 | { | f | 1 | { |
2 | "author": "S Botello-Aceves, A Hernandez-Aguirre, SI Valdez", | 2 | "author": "S Botello-Aceves, A Hernandez-Aguirre, SI Valdez", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Revista" | 8 | "value": "Revista" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "0d588b3c-d17f-4743-b7cf-c6720cada778", | 33 | "id": "0d588b3c-d17f-4743-b7cf-c6720cada778", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-11T01:22:52.371594", | 39 | "metadata_created": "2025-10-11T01:22:52.371594", | ||
n | 40 | "metadata_modified": "2025-10-11T01:22:52.371603", | n | 40 | "metadata_modified": "2025-10-11T01:22:52.852283", |
41 | "name": | 41 | "name": | ||
42 | lti-objective-estimation-distribution-algorithm-d-moeda-3ce492c1fc2f", | 42 | lti-objective-estimation-distribution-algorithm-d-moeda-3ce492c1fc2f", | ||
43 | "notes": "Improvement Direction Mapping (IDM) methods have been | 43 | "notes": "Improvement Direction Mapping (IDM) methods have been | ||
44 | applied as a local search strategy to hybridize global search | 44 | applied as a local search strategy to hybridize global search | ||
45 | algorithms. A natural question is whether this concept could be | 45 | algorithms. A natural question is whether this concept could be | ||
46 | applied within a global search scheme, so that the stochastic search | 46 | applied within a global search scheme, so that the stochastic search | ||
47 | operators are directed toward promising regions, promoting a more | 47 | operators are directed toward promising regions, promoting a more | ||
48 | efficient search. This paper introduces a novel Multi-Objective | 48 | efficient search. This paper introduces a novel Multi-Objective | ||
49 | Evolutionary Algorithm (MOEA) that incorporates the IDM into the | 49 | Evolutionary Algorithm (MOEA) that incorporates the IDM into the | ||
50 | reproduction operator of an Estimation of Distribution Algorithm | 50 | reproduction operator of an Estimation of Distribution Algorithm | ||
51 | (EDA). In this proposal, the search directions of the IDM based on | 51 | (EDA). In this proposal, the search directions of the IDM based on | ||
52 | aggregation functions are used to directly steer the search process of | 52 | aggregation functions are used to directly steer the search process of | ||
53 | a multi-objective evolutionary algorithm based on decomposition, by | 53 | a multi-objective evolutionary algorithm based on decomposition, by | ||
54 | orienting a local probability distribution towards a search direction, | 54 | orienting a local probability distribution towards a search direction, | ||
55 | the proposal intends to steer solutions toward the Pareto front (PF) | 55 | the proposal intends to steer solutions toward the Pareto front (PF) | ||
56 | of the Multi-Objective Optimization Problem (MOP), exploiting the | 56 | of the Multi-Objective Optimization Problem (MOP), exploiting the | ||
57 | search features of the aggregation functions. The proposal is tested | 57 | search features of the aggregation functions. The proposal is tested | ||
58 | using a set of well-known benchmark MOPs and compared to state of the | 58 | using a set of well-known benchmark MOPs and compared to state of the | ||
59 | art MOEAs. Results showed statistical evidence about the importance of | 59 | art MOEAs. Results showed statistical evidence about the importance of | ||
60 | the orientation of the search probability distribution to improve the | 60 | the orientation of the search probability distribution to improve the | ||
61 | convergence to the Pareto front.", | 61 | convergence to the Pareto front.", | ||
n | 62 | "num_resources": 0, | n | 62 | "num_resources": 1, |
63 | "num_tags": 13, | 63 | "num_tags": 13, | ||
64 | "organization": { | 64 | "organization": { | ||
65 | "approval_status": "approved", | 65 | "approval_status": "approved", | ||
66 | "created": "2022-05-19T00:10:30.480393", | 66 | "created": "2022-05-19T00:10:30.480393", | ||
67 | "description": "Observatorio Metropolitano CentroGeo", | 67 | "description": "Observatorio Metropolitano CentroGeo", | ||
68 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 68 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
69 | "image_url": | 69 | "image_url": | ||
70 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 70 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
71 | "is_organization": true, | 71 | "is_organization": true, | ||
72 | "name": "observatorio-metropolitano-centrogeo", | 72 | "name": "observatorio-metropolitano-centrogeo", | ||
73 | "state": "active", | 73 | "state": "active", | ||
74 | "title": "Observatorio Metropolitano CentroGeo", | 74 | "title": "Observatorio Metropolitano CentroGeo", | ||
75 | "type": "organization" | 75 | "type": "organization" | ||
76 | }, | 76 | }, | ||
77 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 77 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
78 | "private": false, | 78 | "private": false, | ||
79 | "relationships_as_object": [], | 79 | "relationships_as_object": [], | ||
80 | "relationships_as_subject": [], | 80 | "relationships_as_subject": [], | ||
t | 81 | "resources": [], | t | 81 | "resources": [ |
82 | { | ||||
83 | "cache_last_updated": null, | ||||
84 | "cache_url": null, | ||||
85 | "created": "2025-10-11T01:22:52.889220", | ||||
86 | "datastore_active": false, | ||||
87 | "description": "Improvement Direction Mapping (IDM) methods have | ||||
88 | been applied as a local search strategy to hybridize global search | ||||
89 | algorithms. A natural question is whether this concept could be | ||||
90 | applied within a global search scheme, so that the stochastic search | ||||
91 | operators are directed toward promising regions, promoting a more | ||||
92 | efficient search. This paper introduces a novel Multi-Objective | ||||
93 | Evolutionary Algorithm (MOEA) that incorporates the IDM into the | ||||
94 | reproduction operator of an Estimation of Distribution Algorithm | ||||
95 | (EDA). In this proposal, the search directions of the IDM based on | ||||
96 | aggregation functions are used to directly steer the search process of | ||||
97 | a multi-objective evolutionary algorithm based on decomposition, by | ||||
98 | orienting a local probability distribution towards a search direction, | ||||
99 | the proposal intends to steer solutions toward the Pareto front (PF) | ||||
100 | of the Multi-Objective Optimization Problem (MOP), exploiting the | ||||
101 | search features of the aggregation functions. The proposal is tested | ||||
102 | using a set of well-known benchmark MOPs and compared to state of the | ||||
103 | art MOEAs. Results showed statistical evidence about the importance of | ||||
104 | the orientation of the search probability distribution to improve the | ||||
105 | convergence to the Pareto front.", | ||||
106 | "format": "HTML", | ||||
107 | "hash": "", | ||||
108 | "id": "4fc7ece9-774c-4b29-ae73-2a8410803ea6", | ||||
109 | "last_modified": null, | ||||
110 | "metadata_modified": "2025-10-11T01:22:52.856426", | ||||
111 | "mimetype": null, | ||||
112 | "mimetype_inner": null, | ||||
113 | "name": "The directed multi-objective estimation distribution | ||||
114 | algorithm (D-MOEDA)", | ||||
115 | "package_id": "0d588b3c-d17f-4743-b7cf-c6720cada778", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": null, | ||||
119 | "state": "active", | ||||
120 | "url": "https://doi.org/10.1016/j.matcom.2023.07.013", | ||||
121 | "url_type": null | ||||
122 | } | ||||
123 | ], | ||||
82 | "state": "active", | 124 | "state": "active", | ||
83 | "tags": [ | 125 | "tags": [ | ||
84 | { | 126 | { | ||
85 | "display_name": "algorithm", | 127 | "display_name": "algorithm", | ||
86 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 128 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
87 | "name": "algorithm", | 129 | "name": "algorithm", | ||
88 | "state": "active", | 130 | "state": "active", | ||
89 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
90 | }, | 132 | }, | ||
91 | { | 133 | { | ||
92 | "display_name": "benchmark-surveying", | 134 | "display_name": "benchmark-surveying", | ||
93 | "id": "d80426c1-17f9-4c4c-b192-367083726326", | 135 | "id": "d80426c1-17f9-4c4c-b192-367083726326", | ||
94 | "name": "benchmark-surveying", | 136 | "name": "benchmark-surveying", | ||
95 | "state": "active", | 137 | "state": "active", | ||
96 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
97 | }, | 139 | }, | ||
98 | { | 140 | { | ||
99 | "display_name": "computer-science", | 141 | "display_name": "computer-science", | ||
100 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 142 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
101 | "name": "computer-science", | 143 | "name": "computer-science", | ||
102 | "state": "active", | 144 | "state": "active", | ||
103 | "vocabulary_id": null | 145 | "vocabulary_id": null | ||
104 | }, | 146 | }, | ||
105 | { | 147 | { | ||
106 | "display_name": "convergence-economics", | 148 | "display_name": "convergence-economics", | ||
107 | "id": "258edcd6-3946-4a99-b77a-666937cf4c7c", | 149 | "id": "258edcd6-3946-4a99-b77a-666937cf4c7c", | ||
108 | "name": "convergence-economics", | 150 | "name": "convergence-economics", | ||
109 | "state": "active", | 151 | "state": "active", | ||
110 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
111 | }, | 153 | }, | ||
112 | { | 154 | { | ||
113 | "display_name": "estimation-of-distribution-algorithm", | 155 | "display_name": "estimation-of-distribution-algorithm", | ||
114 | "id": "3761b1b1-45d5-4b9b-b839-fd15bf058f33", | 156 | "id": "3761b1b1-45d5-4b9b-b839-fd15bf058f33", | ||
115 | "name": "estimation-of-distribution-algorithm", | 157 | "name": "estimation-of-distribution-algorithm", | ||
116 | "state": "active", | 158 | "state": "active", | ||
117 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
118 | }, | 160 | }, | ||
119 | { | 161 | { | ||
120 | "display_name": "evolutionary-algorithm", | 162 | "display_name": "evolutionary-algorithm", | ||
121 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | 163 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | ||
122 | "name": "evolutionary-algorithm", | 164 | "name": "evolutionary-algorithm", | ||
123 | "state": "active", | 165 | "state": "active", | ||
124 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
125 | }, | 167 | }, | ||
126 | { | 168 | { | ||
127 | "display_name": "local-search-optimization", | 169 | "display_name": "local-search-optimization", | ||
128 | "id": "c54f134e-091b-4f43-b06a-1c5e17d800e1", | 170 | "id": "c54f134e-091b-4f43-b06a-1c5e17d800e1", | ||
129 | "name": "local-search-optimization", | 171 | "name": "local-search-optimization", | ||
130 | "state": "active", | 172 | "state": "active", | ||
131 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
132 | }, | 174 | }, | ||
133 | { | 175 | { | ||
134 | "display_name": "mathematical-optimization", | 176 | "display_name": "mathematical-optimization", | ||
135 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 177 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
136 | "name": "mathematical-optimization", | 178 | "name": "mathematical-optimization", | ||
137 | "state": "active", | 179 | "state": "active", | ||
138 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
139 | }, | 181 | }, | ||
140 | { | 182 | { | ||
141 | "display_name": "mathematics", | 183 | "display_name": "mathematics", | ||
142 | "id": "bb671137-9d2f-4e20-9668-bf6432ca50fb", | 184 | "id": "bb671137-9d2f-4e20-9668-bf6432ca50fb", | ||
143 | "name": "mathematics", | 185 | "name": "mathematics", | ||
144 | "state": "active", | 186 | "state": "active", | ||
145 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
146 | }, | 188 | }, | ||
147 | { | 189 | { | ||
148 | "display_name": "multi-objective-optimization", | 190 | "display_name": "multi-objective-optimization", | ||
149 | "id": "028254bd-4fdf-4157-a6c4-850397abd03d", | 191 | "id": "028254bd-4fdf-4157-a6c4-850397abd03d", | ||
150 | "name": "multi-objective-optimization", | 192 | "name": "multi-objective-optimization", | ||
151 | "state": "active", | 193 | "state": "active", | ||
152 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
153 | }, | 195 | }, | ||
154 | { | 196 | { | ||
155 | "display_name": "operator-biology", | 197 | "display_name": "operator-biology", | ||
156 | "id": "e6d3f57c-da81-4ab5-bcbe-a02d436be62f", | 198 | "id": "e6d3f57c-da81-4ab5-bcbe-a02d436be62f", | ||
157 | "name": "operator-biology", | 199 | "name": "operator-biology", | ||
158 | "state": "active", | 200 | "state": "active", | ||
159 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
160 | }, | 202 | }, | ||
161 | { | 203 | { | ||
162 | "display_name": "pareto-principle", | 204 | "display_name": "pareto-principle", | ||
163 | "id": "1ee6143a-1062-4117-989d-0ba641dcda3c", | 205 | "id": "1ee6143a-1062-4117-989d-0ba641dcda3c", | ||
164 | "name": "pareto-principle", | 206 | "name": "pareto-principle", | ||
165 | "state": "active", | 207 | "state": "active", | ||
166 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
167 | }, | 209 | }, | ||
168 | { | 210 | { | ||
169 | "display_name": "search-algorithm", | 211 | "display_name": "search-algorithm", | ||
170 | "id": "5de175da-dd1d-48e3-ae07-03f7c03b68f7", | 212 | "id": "5de175da-dd1d-48e3-ae07-03f7c03b68f7", | ||
171 | "name": "search-algorithm", | 213 | "name": "search-algorithm", | ||
172 | "state": "active", | 214 | "state": "active", | ||
173 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
174 | } | 216 | } | ||
175 | ], | 217 | ], | ||
176 | "title": "The directed multi-objective estimation distribution | 218 | "title": "The directed multi-objective estimation distribution | ||
177 | algorithm (D-MOEDA)", | 219 | algorithm (D-MOEDA)", | ||
178 | "type": "dataset", | 220 | "type": "dataset", | ||
179 | "url": "https://doi.org/10.1016/j.matcom.2023.07.013", | 221 | "url": "https://doi.org/10.1016/j.matcom.2023.07.013", | ||
180 | "version": null | 222 | "version": null | ||
181 | } | 223 | } |