Cambios
En el instante 11 de octubre de 2025, 1:22:56 UTC,
-
Añadido recurso Valley Classification using Convolutional Neural Network and a Geomorphons Map a Valley Classification using Convolutional Neural Network and a Geomorphons Map
f | 1 | { | f | 1 | { |
2 | "author": "J Paredes-Tavares, R Lopez-Farias, SI Valdez, HS | 2 | "author": "J Paredes-Tavares, R Lopez-Farias, SI Valdez, HS | ||
3 | Lamphar", | 3 | Lamphar", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "Publicaci\u00f3n", | 8 | "key": "Publicaci\u00f3n", | ||
9 | "value": "Conferencia" | 9 | "value": "Conferencia" | ||
10 | }, | 10 | }, | ||
11 | { | 11 | { | ||
12 | "key": "Tipo", | 12 | "key": "Tipo", | ||
13 | "value": "Publicaci\u00f3n" | 13 | "value": "Publicaci\u00f3n" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "groups": [ | 16 | "groups": [ | ||
17 | { | 17 | { | ||
18 | "description": "Este grupo integra las publicaciones | 18 | "description": "Este grupo integra las publicaciones | ||
19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
21 | presentados en congresos nacionales e internacionales, manuscritos en | 21 | presentados en congresos nacionales e internacionales, manuscritos en | ||
22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
27 | "display_name": "Publicaciones", | 27 | "display_name": "Publicaciones", | ||
28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
29 | "image_display_url": "", | 29 | "image_display_url": "", | ||
30 | "name": "publicaciones", | 30 | "name": "publicaciones", | ||
31 | "title": "Publicaciones" | 31 | "title": "Publicaciones" | ||
32 | } | 32 | } | ||
33 | ], | 33 | ], | ||
34 | "id": "7b534f72-99f5-46d9-8797-abb933c36291", | 34 | "id": "7b534f72-99f5-46d9-8797-abb933c36291", | ||
35 | "isopen": false, | 35 | "isopen": false, | ||
36 | "license_id": null, | 36 | "license_id": null, | ||
37 | "license_title": null, | 37 | "license_title": null, | ||
38 | "maintainer": null, | 38 | "maintainer": null, | ||
39 | "maintainer_email": null, | 39 | "maintainer_email": null, | ||
40 | "metadata_created": "2025-10-11T01:22:55.772281", | 40 | "metadata_created": "2025-10-11T01:22:55.772281", | ||
n | 41 | "metadata_modified": "2025-10-11T01:22:55.772290", | n | 41 | "metadata_modified": "2025-10-11T01:22:56.228961", |
42 | "name": | 42 | "name": | ||
43 | sing-convolutional-neural-network-and-a-geomorphons-map-c2eaff066675", | 43 | sing-convolutional-neural-network-and-a-geomorphons-map-c2eaff066675", | ||
44 | "notes": "Geomorphological classification serves as a valuable tool | 44 | "notes": "Geomorphological classification serves as a valuable tool | ||
45 | for comprehending the origin and evolution of landscapes, as well as | 45 | for comprehending the origin and evolution of landscapes, as well as | ||
46 | for making informed decisions regarding environmental hazard | 46 | for making informed decisions regarding environmental hazard | ||
47 | mitigation and sustainable development. However, the process of | 47 | mitigation and sustainable development. However, the process of | ||
48 | classifying landforms is typically time-consuming and necessitates | 48 | classifying landforms is typically time-consuming and necessitates | ||
49 | specialized expertise. This research article presents a novel approach | 49 | specialized expertise. This research article presents a novel approach | ||
50 | that utilizes a convolutional neural network (CNN) to classify | 50 | that utilizes a convolutional neural network (CNN) to classify | ||
51 | valleys. The methodology involves employing an initial classification | 51 | valleys. The methodology involves employing an initial classification | ||
52 | generated by an unsupervised geomorphons classifier as input data, | 52 | generated by an unsupervised geomorphons classifier as input data, | ||
53 | which is subsequently refined using human-generated ground truth. In | 53 | which is subsequently refined using human-generated ground truth. In | ||
54 | contrast with the original geomorphons method, this novel method | 54 | contrast with the original geomorphons method, this novel method | ||
55 | enhances spatial coherence by effectively connecting pixels classified | 55 | enhances spatial coherence by effectively connecting pixels classified | ||
56 | as valleys. The results show that the proposed CNN-based method | 56 | as valleys. The results show that the proposed CNN-based method | ||
57 | significantly enhances the accuracy of the classification. We are | 57 | significantly enhances the accuracy of the classification. We are | ||
58 | confident our approach is competitive according to the Total Operating | 58 | confident our approach is competitive according to the Total Operating | ||
59 | Characteristic (TOC) curve as well as classification metrics.", | 59 | Characteristic (TOC) curve as well as classification metrics.", | ||
n | 60 | "num_resources": 0, | n | 60 | "num_resources": 1, |
61 | "num_tags": 5, | 61 | "num_tags": 5, | ||
62 | "organization": { | 62 | "organization": { | ||
63 | "approval_status": "approved", | 63 | "approval_status": "approved", | ||
64 | "created": "2022-05-19T00:10:30.480393", | 64 | "created": "2022-05-19T00:10:30.480393", | ||
65 | "description": "Observatorio Metropolitano CentroGeo", | 65 | "description": "Observatorio Metropolitano CentroGeo", | ||
66 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 66 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
67 | "image_url": | 67 | "image_url": | ||
68 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 68 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
69 | "is_organization": true, | 69 | "is_organization": true, | ||
70 | "name": "observatorio-metropolitano-centrogeo", | 70 | "name": "observatorio-metropolitano-centrogeo", | ||
71 | "state": "active", | 71 | "state": "active", | ||
72 | "title": "Observatorio Metropolitano CentroGeo", | 72 | "title": "Observatorio Metropolitano CentroGeo", | ||
73 | "type": "organization" | 73 | "type": "organization" | ||
74 | }, | 74 | }, | ||
75 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 75 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
76 | "private": false, | 76 | "private": false, | ||
77 | "relationships_as_object": [], | 77 | "relationships_as_object": [], | ||
78 | "relationships_as_subject": [], | 78 | "relationships_as_subject": [], | ||
t | 79 | "resources": [], | t | 79 | "resources": [ |
80 | { | ||||
81 | "cache_last_updated": null, | ||||
82 | "cache_url": null, | ||||
83 | "created": "2025-10-11T01:22:56.253500", | ||||
84 | "datastore_active": false, | ||||
85 | "description": "Geomorphological classification serves as a | ||||
86 | valuable tool for comprehending the origin and evolution of | ||||
87 | landscapes, as well as for making informed decisions regarding | ||||
88 | environmental hazard mitigation and sustainable development. However, | ||||
89 | the process of classifying landforms is typically time-consuming and | ||||
90 | necessitates specialized expertise. This research article presents a | ||||
91 | novel approach that utilizes a convolutional neural network (CNN) to | ||||
92 | classify valleys. The methodology involves employing an initial | ||||
93 | classification generated by an unsupervised geomorphons classifier as | ||||
94 | input data, which is subsequently refined using human-generated ground | ||||
95 | truth. In contrast with the original geomorphons method, this novel | ||||
96 | method enhances spatial coherence by effectively connecting pixels | ||||
97 | classified as valleys. The results show that the proposed CNN-based | ||||
98 | method significantly enhances the accuracy of the classification. We | ||||
99 | are confident our approach is competitive according to the Total | ||||
100 | Operating Characteristic (TOC) curve as well as classification | ||||
101 | metrics.", | ||||
102 | "format": "HTML", | ||||
103 | "hash": "", | ||||
104 | "id": "2e877a0b-5e29-4e4e-8389-4a87489ae57a", | ||||
105 | "last_modified": null, | ||||
106 | "metadata_modified": "2025-10-11T01:22:56.236075", | ||||
107 | "mimetype": null, | ||||
108 | "mimetype_inner": null, | ||||
109 | "name": "Valley Classification using Convolutional Neural | ||||
110 | Network and a Geomorphons Map", | ||||
111 | "package_id": "7b534f72-99f5-46d9-8797-abb933c36291", | ||||
112 | "position": 0, | ||||
113 | "resource_type": null, | ||||
114 | "size": null, | ||||
115 | "state": "active", | ||||
116 | "url": "https://doi.org/10.1109/enc60556.2023.10508646", | ||||
117 | "url_type": null | ||||
118 | } | ||||
119 | ], | ||||
80 | "state": "active", | 120 | "state": "active", | ||
81 | "tags": [ | 121 | "tags": [ | ||
82 | { | 122 | { | ||
83 | "display_name": "artificial-intelligence", | 123 | "display_name": "artificial-intelligence", | ||
84 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 124 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
85 | "name": "artificial-intelligence", | 125 | "name": "artificial-intelligence", | ||
86 | "state": "active", | 126 | "state": "active", | ||
87 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
88 | }, | 128 | }, | ||
89 | { | 129 | { | ||
90 | "display_name": "artificial-neural-network", | 130 | "display_name": "artificial-neural-network", | ||
91 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | 131 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | ||
92 | "name": "artificial-neural-network", | 132 | "name": "artificial-neural-network", | ||
93 | "state": "active", | 133 | "state": "active", | ||
94 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
95 | }, | 135 | }, | ||
96 | { | 136 | { | ||
97 | "display_name": "computer-science", | 137 | "display_name": "computer-science", | ||
98 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 138 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
99 | "name": "computer-science", | 139 | "name": "computer-science", | ||
100 | "state": "active", | 140 | "state": "active", | ||
101 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
102 | }, | 142 | }, | ||
103 | { | 143 | { | ||
104 | "display_name": "convolutional-neural-network", | 144 | "display_name": "convolutional-neural-network", | ||
105 | "id": "b08eff8e-b411-4c56-ab0d-3ef47b79699c", | 145 | "id": "b08eff8e-b411-4c56-ab0d-3ef47b79699c", | ||
106 | "name": "convolutional-neural-network", | 146 | "name": "convolutional-neural-network", | ||
107 | "state": "active", | 147 | "state": "active", | ||
108 | "vocabulary_id": null | 148 | "vocabulary_id": null | ||
109 | }, | 149 | }, | ||
110 | { | 150 | { | ||
111 | "display_name": "pattern-recognition-psychology", | 151 | "display_name": "pattern-recognition-psychology", | ||
112 | "id": "e3b5294b-7ed6-4637-93c9-eae7d3b94405", | 152 | "id": "e3b5294b-7ed6-4637-93c9-eae7d3b94405", | ||
113 | "name": "pattern-recognition-psychology", | 153 | "name": "pattern-recognition-psychology", | ||
114 | "state": "active", | 154 | "state": "active", | ||
115 | "vocabulary_id": null | 155 | "vocabulary_id": null | ||
116 | } | 156 | } | ||
117 | ], | 157 | ], | ||
118 | "title": "Valley Classification using Convolutional Neural Network | 158 | "title": "Valley Classification using Convolutional Neural Network | ||
119 | and a Geomorphons Map", | 159 | and a Geomorphons Map", | ||
120 | "type": "dataset", | 160 | "type": "dataset", | ||
121 | "url": "https://doi.org/10.1109/enc60556.2023.10508646", | 161 | "url": "https://doi.org/10.1109/enc60556.2023.10508646", | ||
122 | "version": null | 162 | "version": null | ||
123 | } | 163 | } |