Cambios
En el instante 10 de octubre de 2025, 7:19:41 UTC,
-
Añadido recurso Dash sylvereye: a Python library for dashboard-driven visualization of large street networks a Dash sylvereye: a Python library for dashboard-driven visualization of large street networks
f | 1 | { | f | 1 | { |
2 | "author": "A Garcia-Robledo, M Zangiabady", | 2 | "author": "A Garcia-Robledo, M Zangiabady", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Revista" | 8 | "value": "Revista" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "c63d1c2d-b9cd-4fcb-8213-b2ac61e3916c", | 33 | "id": "c63d1c2d-b9cd-4fcb-8213-b2ac61e3916c", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-10T07:19:40.982543", | 39 | "metadata_created": "2025-10-10T07:19:40.982543", | ||
n | 40 | "metadata_modified": "2025-10-10T07:19:40.982551", | n | 40 | "metadata_modified": "2025-10-10T07:19:41.597500", |
41 | "name": | 41 | "name": | ||
42 | for-dashboard-driven-visualization-of-large-street-netw-1752cd482777", | 42 | for-dashboard-driven-visualization-of-large-street-netw-1752cd482777", | ||
43 | "notes": "State-of-the-art open network visualization tools like | 43 | "notes": "State-of-the-art open network visualization tools like | ||
44 | Gephi, KeyLines, and Cytoscape are not suitable for studying street | 44 | Gephi, KeyLines, and Cytoscape are not suitable for studying street | ||
45 | networks with thousands of roads since they do not support | 45 | networks with thousands of roads since they do not support | ||
46 | simultaneously polylines for edges, navigable maps, GPU-accelerated | 46 | simultaneously polylines for edges, navigable maps, GPU-accelerated | ||
47 | rendering, interactivity, and the means for visualizing multivariate | 47 | rendering, interactivity, and the means for visualizing multivariate | ||
48 | data. To fill this gap, the present paper presents Dash Sylvereye: a | 48 | data. To fill this gap, the present paper presents Dash Sylvereye: a | ||
49 | new Python library to produce interactive visualizations of primal | 49 | new Python library to produce interactive visualizations of primal | ||
50 | street networks on top of tiled web maps. Thanks to its integration | 50 | street networks on top of tiled web maps. Thanks to its integration | ||
51 | with the Dash framework, Dash Sylvereye can be used to develop web | 51 | with the Dash framework, Dash Sylvereye can be used to develop web | ||
52 | dashboards around temporal and multivariate street data by | 52 | dashboards around temporal and multivariate street data by | ||
53 | coordinating the various elements of a Dash Sylvereye visualization | 53 | coordinating the various elements of a Dash Sylvereye visualization | ||
54 | with other plotting and UI components provided by the Dash framework. | 54 | with other plotting and UI components provided by the Dash framework. | ||
55 | Additionally, Dash Sylvereye provides convenient functions to easily | 55 | Additionally, Dash Sylvereye provides convenient functions to easily | ||
56 | import OpenStreetMap street topologies obtained with the OSMnx | 56 | import OpenStreetMap street topologies obtained with the OSMnx | ||
57 | library. Moreover, Dash Sylvereye uses WebGL for GPU-accelerated | 57 | library. Moreover, Dash Sylvereye uses WebGL for GPU-accelerated | ||
58 | rendering when redrawing the road network. We conduct experiments to | 58 | rendering when redrawing the road network. We conduct experiments to | ||
59 | assess the performance of Dash Sylvereye on a commodity computer when | 59 | assess the performance of Dash Sylvereye on a commodity computer when | ||
60 | exploiting software acceleration in terms of frames per second, CPU | 60 | exploiting software acceleration in terms of frames per second, CPU | ||
61 | time, and frame duration. We show that Dash Sylvereye can offer fast | 61 | time, and frame duration. We show that Dash Sylvereye can offer fast | ||
62 | panning speeds, close to 60 FPS, and CPU times below 20 ms, for street | 62 | panning speeds, close to 60 FPS, and CPU times below 20 ms, for street | ||
63 | networks with thousands of edges, and above 24 FPS, and CPU times | 63 | networks with thousands of edges, and above 24 FPS, and CPU times | ||
64 | below 40 ms, for networks with dozens of thousands of edges. | 64 | below 40 ms, for networks with dozens of thousands of edges. | ||
65 | Additionally, we conduct a performance comparison against two | 65 | Additionally, we conduct a performance comparison against two | ||
66 | state-of-the-art street visualization tools. We found Dash Sylvereye | 66 | state-of-the-art street visualization tools. We found Dash Sylvereye | ||
67 | to be competitive when compared to the state-of-the-art visualization | 67 | to be competitive when compared to the state-of-the-art visualization | ||
68 | libraries Kepler.gl and city-roads. Finally, we describe a web | 68 | libraries Kepler.gl and city-roads. Finally, we describe a web | ||
69 | dashboard application that exploits Dash Sylvereye for the analysis of | 69 | dashboard application that exploits Dash Sylvereye for the analysis of | ||
70 | a SUMO vehicle traffic simulation.", | 70 | a SUMO vehicle traffic simulation.", | ||
n | 71 | "num_resources": 0, | n | 71 | "num_resources": 1, |
72 | "num_tags": 8, | 72 | "num_tags": 8, | ||
73 | "organization": { | 73 | "organization": { | ||
74 | "approval_status": "approved", | 74 | "approval_status": "approved", | ||
75 | "created": "2022-05-19T00:10:30.480393", | 75 | "created": "2022-05-19T00:10:30.480393", | ||
76 | "description": "Observatorio Metropolitano CentroGeo", | 76 | "description": "Observatorio Metropolitano CentroGeo", | ||
77 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 77 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
78 | "image_url": | 78 | "image_url": | ||
79 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 79 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
80 | "is_organization": true, | 80 | "is_organization": true, | ||
81 | "name": "observatorio-metropolitano-centrogeo", | 81 | "name": "observatorio-metropolitano-centrogeo", | ||
82 | "state": "active", | 82 | "state": "active", | ||
83 | "title": "Observatorio Metropolitano CentroGeo", | 83 | "title": "Observatorio Metropolitano CentroGeo", | ||
84 | "type": "organization" | 84 | "type": "organization" | ||
85 | }, | 85 | }, | ||
86 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 86 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
87 | "private": false, | 87 | "private": false, | ||
88 | "relationships_as_object": [], | 88 | "relationships_as_object": [], | ||
89 | "relationships_as_subject": [], | 89 | "relationships_as_subject": [], | ||
t | 90 | "resources": [], | t | 90 | "resources": [ |
91 | { | ||||
92 | "cache_last_updated": null, | ||||
93 | "cache_url": null, | ||||
94 | "created": "2025-10-10T07:19:41.623642", | ||||
95 | "datastore_active": false, | ||||
96 | "description": "State-of-the-art open network visualization | ||||
97 | tools like Gephi, KeyLines, and Cytoscape are not suitable for | ||||
98 | studying street networks with thousands of roads since they do not | ||||
99 | support simultaneously polylines for edges, navigable maps, | ||||
100 | GPU-accelerated rendering, interactivity, and the means for | ||||
101 | visualizing multivariate data. To fill this gap, the present paper | ||||
102 | presents Dash Sylvereye: a new Python library to produce interactive | ||||
103 | visualizations of primal street networks on top of tiled web maps. | ||||
104 | Thanks to its integration with the Dash framework, Dash Sylvereye can | ||||
105 | be used to develop web dashboards around temporal and multivariate | ||||
106 | street data by coordinating the various elements of a Dash Sylvereye | ||||
107 | visualization with other plotting and UI components provided by the | ||||
108 | Dash framework. Additionally, Dash Sylvereye provides convenient | ||||
109 | functions to easily import OpenStreetMap street topologies obtained | ||||
110 | with the OSMnx library. Moreover, Dash Sylvereye uses WebGL for | ||||
111 | GPU-accelerated rendering when redrawing the road network. We conduct | ||||
112 | experiments to assess the performance of Dash Sylvereye on a commodity | ||||
113 | computer when exploiting software acceleration in terms of frames per | ||||
114 | second, CPU time, and frame duration. We show that Dash Sylvereye can | ||||
115 | offer fast panning speeds, close to 60 FPS, and CPU times below 20 ms, | ||||
116 | for street networks with thousands of edges, and above 24 FPS, and CPU | ||||
117 | times below 40 ms, for networks with dozens of thousands of edges. | ||||
118 | Additionally, we conduct a performance comparison against two | ||||
119 | state-of-the-art street visualization tools. We found Dash Sylvereye | ||||
120 | to be competitive when compared to the state-of-the-art visualization | ||||
121 | libraries Kepler.gl and city-roads. Finally, we describe a web | ||||
122 | dashboard application that exploits Dash Sylvereye for the analysis of | ||||
123 | a SUMO vehicle traffic simulation.", | ||||
124 | "format": "HTML", | ||||
125 | "hash": "", | ||||
126 | "id": "8128fc8b-042d-4d35-9323-e4fc8cfb8ea6", | ||||
127 | "last_modified": null, | ||||
128 | "metadata_modified": "2025-10-10T07:19:41.601249", | ||||
129 | "mimetype": null, | ||||
130 | "mimetype_inner": null, | ||||
131 | "name": "Dash sylvereye: a Python library for dashboard-driven | ||||
132 | visualization of large street networks", | ||||
133 | "package_id": "c63d1c2d-b9cd-4fcb-8213-b2ac61e3916c", | ||||
134 | "position": 0, | ||||
135 | "resource_type": null, | ||||
136 | "size": null, | ||||
137 | "state": "active", | ||||
138 | "url": "https://doi.org/10.1109/access.2023.3327008", | ||||
139 | "url_type": null | ||||
140 | } | ||||
141 | ], | ||||
91 | "state": "active", | 142 | "state": "active", | ||
92 | "tags": [ | 143 | "tags": [ | ||
93 | { | 144 | { | ||
94 | "display_name": "computer-graphics-images", | 145 | "display_name": "computer-graphics-images", | ||
95 | "id": "2e18beac-f73f-4942-afb3-8161456bd41d", | 146 | "id": "2e18beac-f73f-4942-afb3-8161456bd41d", | ||
96 | "name": "computer-graphics-images", | 147 | "name": "computer-graphics-images", | ||
97 | "state": "active", | 148 | "state": "active", | ||
98 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
99 | }, | 150 | }, | ||
100 | { | 151 | { | ||
101 | "display_name": "computer-science", | 152 | "display_name": "computer-science", | ||
102 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 153 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
103 | "name": "computer-science", | 154 | "name": "computer-science", | ||
104 | "state": "active", | 155 | "state": "active", | ||
105 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
106 | }, | 157 | }, | ||
107 | { | 158 | { | ||
108 | "display_name": "dash", | 159 | "display_name": "dash", | ||
109 | "id": "e41e669d-e3a1-4afc-9363-fb80dce5ae26", | 160 | "id": "e41e669d-e3a1-4afc-9363-fb80dce5ae26", | ||
110 | "name": "dash", | 161 | "name": "dash", | ||
111 | "state": "active", | 162 | "state": "active", | ||
112 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
113 | }, | 164 | }, | ||
114 | { | 165 | { | ||
115 | "display_name": "data-visualization", | 166 | "display_name": "data-visualization", | ||
116 | "id": "cb27204d-6b7b-49c2-aa74-381428516a71", | 167 | "id": "cb27204d-6b7b-49c2-aa74-381428516a71", | ||
117 | "name": "data-visualization", | 168 | "name": "data-visualization", | ||
118 | "state": "active", | 169 | "state": "active", | ||
119 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
120 | }, | 171 | }, | ||
121 | { | 172 | { | ||
122 | "display_name": "opengl", | 173 | "display_name": "opengl", | ||
123 | "id": "f187b379-c323-4fc3-81fb-df3693145af5", | 174 | "id": "f187b379-c323-4fc3-81fb-df3693145af5", | ||
124 | "name": "opengl", | 175 | "name": "opengl", | ||
125 | "state": "active", | 176 | "state": "active", | ||
126 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
127 | }, | 178 | }, | ||
128 | { | 179 | { | ||
129 | "display_name": "python-programming-language", | 180 | "display_name": "python-programming-language", | ||
130 | "id": "f2cabec5-7e47-4093-84d8-a93088ba0d9c", | 181 | "id": "f2cabec5-7e47-4093-84d8-a93088ba0d9c", | ||
131 | "name": "python-programming-language", | 182 | "name": "python-programming-language", | ||
132 | "state": "active", | 183 | "state": "active", | ||
133 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
134 | }, | 185 | }, | ||
135 | { | 186 | { | ||
136 | "display_name": "rendering-computer-graphics", | 187 | "display_name": "rendering-computer-graphics", | ||
137 | "id": "6b4242c4-9ced-4044-a898-182cd1e516ce", | 188 | "id": "6b4242c4-9ced-4044-a898-182cd1e516ce", | ||
138 | "name": "rendering-computer-graphics", | 189 | "name": "rendering-computer-graphics", | ||
139 | "state": "active", | 190 | "state": "active", | ||
140 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
141 | }, | 192 | }, | ||
142 | { | 193 | { | ||
143 | "display_name": "visualization", | 194 | "display_name": "visualization", | ||
144 | "id": "756e3958-c645-4b6f-bc16-b2d7413b6067", | 195 | "id": "756e3958-c645-4b6f-bc16-b2d7413b6067", | ||
145 | "name": "visualization", | 196 | "name": "visualization", | ||
146 | "state": "active", | 197 | "state": "active", | ||
147 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
148 | } | 199 | } | ||
149 | ], | 200 | ], | ||
150 | "title": "Dash sylvereye: a Python library for dashboard-driven | 201 | "title": "Dash sylvereye: a Python library for dashboard-driven | ||
151 | visualization of large street networks", | 202 | visualization of large street networks", | ||
152 | "type": "dataset", | 203 | "type": "dataset", | ||
153 | "url": "https://doi.org/10.1109/access.2023.3327008", | 204 | "url": "https://doi.org/10.1109/access.2023.3327008", | ||
154 | "version": null | 205 | "version": null | ||
155 | } | 206 | } |