Cambios
En el instante 10 de octubre de 2025, 7:19:54 UTC,
-
Añadido recurso Graph processing frameworks a Graph processing frameworks
f | 1 | { | f | 1 | { |
2 | "author": "A Diaz-Perez, A Garcia-Robledo, JL Gonzalez-Compean", | 2 | "author": "A Diaz-Perez, A Garcia-Robledo, JL Gonzalez-Compean", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Cap\u00edtulo" | 8 | "value": "Cap\u00edtulo" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | 33 | "id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-10T07:19:44.700180", | 39 | "metadata_created": "2025-10-10T07:19:44.700180", | ||
n | 40 | "metadata_modified": "2025-10-10T07:19:53.652899", | n | 40 | "metadata_modified": "2025-10-10T07:19:54.163853", |
41 | "name": "graph-processing-frameworks-ad71c87a39c0", | 41 | "name": "graph-processing-frameworks-ad71c87a39c0", | ||
42 | "notes": "This chapter provides a comprehensive overview of Graph | 42 | "notes": "This chapter provides a comprehensive overview of Graph | ||
43 | Processing Frameworks (GPFs), which are software systems designed to | 43 | Processing Frameworks (GPFs), which are software systems designed to | ||
44 | efficiently process large-scale graphs across distributed and parallel | 44 | efficiently process large-scale graphs across distributed and parallel | ||
45 | computing environments. It begins by defining GPFs as toolsets for | 45 | computing environments. It begins by defining GPFs as toolsets for | ||
46 | representing data as vertices and edges, emphasizing their role in | 46 | representing data as vertices and edges, emphasizing their role in | ||
47 | managing the three challenges of big data\u2014volume, velocity, and | 47 | managing the three challenges of big data\u2014volume, velocity, and | ||
48 | variety. The chapter classifies GPFs along four major dimensions: | 48 | variety. The chapter classifies GPFs along four major dimensions: | ||
49 | target platform, computation model, graph processing approach, and | 49 | target platform, computation model, graph processing approach, and | ||
50 | communication model. It reviews key frameworks\u2014such as Surfer, | 50 | communication model. It reviews key frameworks\u2014such as Surfer, | ||
51 | Pegasus, GBase, Pregel, GraphX, Giraph, Gelly, GraphLab, GraphChi, and | 51 | Pegasus, GBase, Pregel, GraphX, Giraph, Gelly, GraphLab, GraphChi, and | ||
52 | Totem\u2014covering their underlying architectures, data abstractions, | 52 | Totem\u2014covering their underlying architectures, data abstractions, | ||
53 | and parallelization strategies, including MapReduce, Bulk Synchronous | 53 | and parallelization strategies, including MapReduce, Bulk Synchronous | ||
54 | Parallel (BSP), and Gather-Apply-Scatter (GAS) models. A practical | 54 | Parallel (BSP), and Gather-Apply-Scatter (GAS) models. A practical | ||
55 | example using Apache Flink\u2019s Gelly demonstrates how GPF APIs can | 55 | example using Apache Flink\u2019s Gelly demonstrates how GPF APIs can | ||
56 | be applied to compute the degree distribution of a large social | 56 | be applied to compute the degree distribution of a large social | ||
57 | network, highlighting performance scalability with multicore systems. | 57 | network, highlighting performance scalability with multicore systems. | ||
58 | The chapter concludes by discussing future research directions, | 58 | The chapter concludes by discussing future research directions, | ||
59 | including graph partitioning in heterogeneous (CPU\u2013GPU) | 59 | including graph partitioning in heterogeneous (CPU\u2013GPU) | ||
60 | environments, the need for standardized benchmarks, and challenges in | 60 | environments, the need for standardized benchmarks, and challenges in | ||
61 | performance evaluation and algorithmic efficiency. Overall, it | 61 | performance evaluation and algorithmic efficiency. Overall, it | ||
62 | situates GPFs as essential infrastructures for large-scale graph | 62 | situates GPFs as essential infrastructures for large-scale graph | ||
63 | analytics in domains such as social networks, bioinformatics, and | 63 | analytics in domains such as social networks, bioinformatics, and | ||
64 | cybersecurity.", | 64 | cybersecurity.", | ||
n | 65 | "num_resources": 1, | n | 65 | "num_resources": 2, |
66 | "num_tags": 6, | 66 | "num_tags": 6, | ||
67 | "organization": { | 67 | "organization": { | ||
68 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
69 | "created": "2022-05-19T00:10:30.480393", | 69 | "created": "2022-05-19T00:10:30.480393", | ||
70 | "description": "Observatorio Metropolitano CentroGeo", | 70 | "description": "Observatorio Metropolitano CentroGeo", | ||
71 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 71 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
72 | "image_url": | 72 | "image_url": | ||
73 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 73 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
74 | "is_organization": true, | 74 | "is_organization": true, | ||
75 | "name": "observatorio-metropolitano-centrogeo", | 75 | "name": "observatorio-metropolitano-centrogeo", | ||
76 | "state": "active", | 76 | "state": "active", | ||
77 | "title": "Observatorio Metropolitano CentroGeo", | 77 | "title": "Observatorio Metropolitano CentroGeo", | ||
78 | "type": "organization" | 78 | "type": "organization" | ||
79 | }, | 79 | }, | ||
80 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 80 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
81 | "private": false, | 81 | "private": false, | ||
82 | "relationships_as_object": [], | 82 | "relationships_as_object": [], | ||
83 | "relationships_as_subject": [], | 83 | "relationships_as_subject": [], | ||
84 | "resources": [ | 84 | "resources": [ | ||
85 | { | 85 | { | ||
86 | "cache_last_updated": null, | 86 | "cache_last_updated": null, | ||
87 | "cache_url": null, | 87 | "cache_url": null, | ||
88 | "created": "2025-10-10T07:19:45.183144", | 88 | "created": "2025-10-10T07:19:45.183144", | ||
89 | "datastore_active": false, | 89 | "datastore_active": false, | ||
90 | "description": "This chapter provides a comprehensive overview | 90 | "description": "This chapter provides a comprehensive overview | ||
91 | of graph processing frameworks (GPFs)\u2014software systems designed | 91 | of graph processing frameworks (GPFs)\u2014software systems designed | ||
92 | to efficiently analyze and compute on large-scale graph data. GPFs | 92 | to efficiently analyze and compute on large-scale graph data. GPFs | ||
93 | enable the representation of entities as vertices and their | 93 | enable the representation of entities as vertices and their | ||
94 | relationships as edges, offering APIs and computation models that | 94 | relationships as edges, offering APIs and computation models that | ||
95 | abstract low-level parallelization details while supporting diverse | 95 | abstract low-level parallelization details while supporting diverse | ||
96 | applications such as social network analysis, biological systems, and | 96 | applications such as social network analysis, biological systems, and | ||
97 | fraud detection. The authors classify more than twenty notable GPFs | 97 | fraud detection. The authors classify more than twenty notable GPFs | ||
98 | along four key dimensions: target platform (shared, distributed, or | 98 | along four key dimensions: target platform (shared, distributed, or | ||
99 | hybrid memory), computation model (MapReduce, BSP, GAS, GSA, etc.), | 99 | hybrid memory), computation model (MapReduce, BSP, GAS, GSA, etc.), | ||
100 | processing approach (vertex-, edge-, subgraph-, or | 100 | processing approach (vertex-, edge-, subgraph-, or | ||
101 | neighborhood-centric), and communication model (message passing, | 101 | neighborhood-centric), and communication model (message passing, | ||
102 | shared memory, or dataflow). Detailed discussions include classical | 102 | shared memory, or dataflow). Detailed discussions include classical | ||
103 | frameworks like Pregel, GraphLab, Giraph, and GraphX, as well as | 103 | frameworks like Pregel, GraphLab, Giraph, and GraphX, as well as | ||
104 | recent innovations leveraging GPU, Hybrid Memory Cube (HMC), and ReRAM | 104 | recent innovations leveraging GPU, Hybrid Memory Cube (HMC), and ReRAM | ||
105 | architectures (e.g., GraphH, GraphP, GraphR). The chapter also | 105 | architectures (e.g., GraphH, GraphP, GraphR). The chapter also | ||
106 | illustrates a practical example of computing the degree distribution | 106 | illustrates a practical example of computing the degree distribution | ||
107 | of a large social network using the Apache Flink Gelly API, | 107 | of a large social network using the Apache Flink Gelly API, | ||
108 | demonstrating scalable parallel execution. In closing, the authors | 108 | demonstrating scalable parallel execution. In closing, the authors | ||
109 | identify open challenges in graph partitioning, hybrid architectures, | 109 | identify open challenges in graph partitioning, hybrid architectures, | ||
110 | benchmarking, and performance evaluation, emphasizing that efficient | 110 | benchmarking, and performance evaluation, emphasizing that efficient | ||
111 | parallelization and resource-aware design remain central to advancing | 111 | parallelization and resource-aware design remain central to advancing | ||
112 | next-generation graph processing systems.", | 112 | next-generation graph processing systems.", | ||
113 | "format": "HTML", | 113 | "format": "HTML", | ||
114 | "hash": "", | 114 | "hash": "", | ||
115 | "id": "fc171422-0921-4ca1-9239-f31b4d9ec5d7", | 115 | "id": "fc171422-0921-4ca1-9239-f31b4d9ec5d7", | ||
116 | "last_modified": null, | 116 | "last_modified": null, | ||
117 | "metadata_modified": "2025-10-10T07:19:53.656960", | 117 | "metadata_modified": "2025-10-10T07:19:53.656960", | ||
118 | "mimetype": null, | 118 | "mimetype": null, | ||
119 | "mimetype_inner": null, | 119 | "mimetype_inner": null, | ||
120 | "name": "Graph Processing Frameworks", | 120 | "name": "Graph Processing Frameworks", | ||
121 | "package_id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | 121 | "package_id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | ||
122 | "position": 0, | 122 | "position": 0, | ||
123 | "resource_type": null, | 123 | "resource_type": null, | ||
124 | "size": null, | 124 | "size": null, | ||
125 | "state": "active", | 125 | "state": "active", | ||
126 | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | 126 | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | ||
127 | "url_type": null | 127 | "url_type": null | ||
t | t | 128 | }, | ||
129 | { | ||||
130 | "cache_last_updated": null, | ||||
131 | "cache_url": null, | ||||
132 | "created": "2025-10-10T07:19:54.186035", | ||||
133 | "datastore_active": false, | ||||
134 | "description": "This chapter provides a comprehensive overview | ||||
135 | of Graph Processing Frameworks (GPFs), which are software systems | ||||
136 | designed to efficiently process large-scale graphs across distributed | ||||
137 | and parallel computing environments. It begins by defining GPFs as | ||||
138 | toolsets for representing data as vertices and edges, emphasizing | ||||
139 | their role in managing the three challenges of big data\u2014volume, | ||||
140 | velocity, and variety. The chapter classifies GPFs along four major | ||||
141 | dimensions: target platform, computation model, graph processing | ||||
142 | approach, and communication model. It reviews key frameworks\u2014such | ||||
143 | as Surfer, Pegasus, GBase, Pregel, GraphX, Giraph, Gelly, GraphLab, | ||||
144 | GraphChi, and Totem\u2014covering their underlying architectures, data | ||||
145 | abstractions, and parallelization strategies, including MapReduce, | ||||
146 | Bulk Synchronous Parallel (BSP), and Gather-Apply-Scatter (GAS) | ||||
147 | models. A practical example using Apache Flink\u2019s Gelly | ||||
148 | demonstrates how GPF APIs can be applied to compute the degree | ||||
149 | distribution of a large social network, highlighting performance | ||||
150 | scalability with multicore systems. The chapter concludes by | ||||
151 | discussing future research directions, including graph partitioning in | ||||
152 | heterogeneous (CPU\u2013GPU) environments, the need for standardized | ||||
153 | benchmarks, and challenges in performance evaluation and algorithmic | ||||
154 | efficiency. Overall, it situates GPFs as essential infrastructures for | ||||
155 | large-scale graph analytics in domains such as social networks, | ||||
156 | bioinformatics, and cybersecurity.", | ||||
157 | "format": "HTML", | ||||
158 | "hash": "", | ||||
159 | "id": "74ad34b0-6ae8-4c70-98cb-6c8dcafbde68", | ||||
160 | "last_modified": null, | ||||
161 | "metadata_modified": "2025-10-10T07:19:54.168599", | ||||
162 | "mimetype": null, | ||||
163 | "mimetype_inner": null, | ||||
164 | "name": "Graph processing frameworks", | ||||
165 | "package_id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | ||||
166 | "position": 1, | ||||
167 | "resource_type": null, | ||||
168 | "size": null, | ||||
169 | "state": "active", | ||||
170 | "url": "https://doi.org/10.1007/978-3-319-77525-8_283", | ||||
171 | "url_type": null | ||||
128 | } | 172 | } | ||
129 | ], | 173 | ], | ||
130 | "state": "active", | 174 | "state": "active", | ||
131 | "tags": [ | 175 | "tags": [ | ||
132 | { | 176 | { | ||
133 | "display_name": "big-data", | 177 | "display_name": "big-data", | ||
134 | "id": "9d010501-9c43-4888-8bde-6e679234a080", | 178 | "id": "9d010501-9c43-4888-8bde-6e679234a080", | ||
135 | "name": "big-data", | 179 | "name": "big-data", | ||
136 | "state": "active", | 180 | "state": "active", | ||
137 | "vocabulary_id": null | 181 | "vocabulary_id": null | ||
138 | }, | 182 | }, | ||
139 | { | 183 | { | ||
140 | "display_name": "computer-science", | 184 | "display_name": "computer-science", | ||
141 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 185 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
142 | "name": "computer-science", | 186 | "name": "computer-science", | ||
143 | "state": "active", | 187 | "state": "active", | ||
144 | "vocabulary_id": null | 188 | "vocabulary_id": null | ||
145 | }, | 189 | }, | ||
146 | { | 190 | { | ||
147 | "display_name": "distributed-computing", | 191 | "display_name": "distributed-computing", | ||
148 | "id": "e4749285-53bd-48e3-8b01-3ebb7b19d0ea", | 192 | "id": "e4749285-53bd-48e3-8b01-3ebb7b19d0ea", | ||
149 | "name": "distributed-computing", | 193 | "name": "distributed-computing", | ||
150 | "state": "active", | 194 | "state": "active", | ||
151 | "vocabulary_id": null | 195 | "vocabulary_id": null | ||
152 | }, | 196 | }, | ||
153 | { | 197 | { | ||
154 | "display_name": "graphs", | 198 | "display_name": "graphs", | ||
155 | "id": "4ce48277-b4dc-4efe-b30c-a82a07b000b4", | 199 | "id": "4ce48277-b4dc-4efe-b30c-a82a07b000b4", | ||
156 | "name": "graphs", | 200 | "name": "graphs", | ||
157 | "state": "active", | 201 | "state": "active", | ||
158 | "vocabulary_id": null | 202 | "vocabulary_id": null | ||
159 | }, | 203 | }, | ||
160 | { | 204 | { | ||
161 | "display_name": "mapreduce", | 205 | "display_name": "mapreduce", | ||
162 | "id": "179e2fcb-bbab-41b4-a188-fdef830e91cd", | 206 | "id": "179e2fcb-bbab-41b4-a188-fdef830e91cd", | ||
163 | "name": "mapreduce", | 207 | "name": "mapreduce", | ||
164 | "state": "active", | 208 | "state": "active", | ||
165 | "vocabulary_id": null | 209 | "vocabulary_id": null | ||
166 | }, | 210 | }, | ||
167 | { | 211 | { | ||
168 | "display_name": "network-science", | 212 | "display_name": "network-science", | ||
169 | "id": "cded1316-bbe3-44dc-b08f-19d811df2330", | 213 | "id": "cded1316-bbe3-44dc-b08f-19d811df2330", | ||
170 | "name": "network-science", | 214 | "name": "network-science", | ||
171 | "state": "active", | 215 | "state": "active", | ||
172 | "vocabulary_id": null | 216 | "vocabulary_id": null | ||
173 | } | 217 | } | ||
174 | ], | 218 | ], | ||
175 | "title": "Graph processing frameworks", | 219 | "title": "Graph processing frameworks", | ||
176 | "type": "dataset", | 220 | "type": "dataset", | ||
177 | "url": "https://doi.org/10.1007/978-3-319-77525-8_283", | 221 | "url": "https://doi.org/10.1007/978-3-319-77525-8_283", | ||
178 | "version": null | 222 | "version": null | ||
179 | } | 223 | } |