Cambios
En el instante 10 de octubre de 2025, 7:19:36 UTC,
-
Añadido recurso Enhancing Epidemic Prediction Using Simulated Annealing for Parameter Optimization in Infection Network Inference a Enhancing Epidemic Prediction Using Simulated Annealing for Parameter Optimization in Infection Network Inference
f | 1 | { | f | 1 | { |
2 | "author": "T Hoven, A Garcia-Robledo, M Zangiabady", | 2 | "author": "T Hoven, A Garcia-Robledo, M Zangiabady", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Conferencia" | 8 | "value": "Conferencia" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "425b47e2-09ca-4fc4-8a3f-bc5e7ff09015", | 33 | "id": "425b47e2-09ca-4fc4-8a3f-bc5e7ff09015", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-10T07:19:35.871964", | 39 | "metadata_created": "2025-10-10T07:19:35.871964", | ||
n | 40 | "metadata_modified": "2025-10-10T07:19:35.871972", | n | 40 | "metadata_modified": "2025-10-10T07:19:36.427090", |
41 | "name": | 41 | "name": | ||
42 | ing-simulated-annealing-for-parameter-optimization-in-i-f6ce98c21f07", | 42 | ing-simulated-annealing-for-parameter-optimization-in-i-f6ce98c21f07", | ||
43 | "notes": "Understanding and predicting outbreaks of epidemics has | 43 | "notes": "Understanding and predicting outbreaks of epidemics has | ||
44 | become a major focus since COVID-19. Researchers have explored various | 44 | become a major focus since COVID-19. Researchers have explored various | ||
45 | methods, from basic curve fitting to complex machine learning | 45 | methods, from basic curve fitting to complex machine learning | ||
46 | techniques, to predict how the virus spreads. One promising method is | 46 | techniques, to predict how the virus spreads. One promising method is | ||
47 | the Network Inference-based Prediction Algorithm (NIPA), which uses | 47 | the Network Inference-based Prediction Algorithm (NIPA), which uses | ||
48 | the SIR-model and the least absolute shrinkage and selection operator | 48 | the SIR-model and the least absolute shrinkage and selection operator | ||
49 | to estimate how the infections spread over different regions. However, | 49 | to estimate how the infections spread over different regions. However, | ||
50 | fine-tuning the regularization parameter of NIPA can be complicated | 50 | fine-tuning the regularization parameter of NIPA can be complicated | ||
51 | because of the time-consuming process and sub-optimal result of k-fold | 51 | because of the time-consuming process and sub-optimal result of k-fold | ||
52 | Cross-Validation (CV). To overcome this, we suggest using Simulated | 52 | Cross-Validation (CV). To overcome this, we suggest using Simulated | ||
53 | Annealing (SA) to optimize NIPA's regularization parameter and find an | 53 | Annealing (SA) to optimize NIPA's regularization parameter and find an | ||
54 | optimal value for the curing probability. Our study aims to combine SA | 54 | optimal value for the curing probability. Our study aims to combine SA | ||
55 | with NIPA to make the process of choosing the optimal value for the | 55 | with NIPA to make the process of choosing the optimal value for the | ||
56 | parameters more effective. The results of the research show that the | 56 | parameters more effective. The results of the research show that the | ||
57 | accuracy is improved and therefore indicate that SA is an acceptable | 57 | accuracy is improved and therefore indicate that SA is an acceptable | ||
58 | alternative to CV, regardless of the computation time being higher.", | 58 | alternative to CV, regardless of the computation time being higher.", | ||
n | 59 | "num_resources": 0, | n | 59 | "num_resources": 1, |
60 | "num_tags": 7, | 60 | "num_tags": 7, | ||
61 | "organization": { | 61 | "organization": { | ||
62 | "approval_status": "approved", | 62 | "approval_status": "approved", | ||
63 | "created": "2022-05-19T00:10:30.480393", | 63 | "created": "2022-05-19T00:10:30.480393", | ||
64 | "description": "Observatorio Metropolitano CentroGeo", | 64 | "description": "Observatorio Metropolitano CentroGeo", | ||
65 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 65 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
66 | "image_url": | 66 | "image_url": | ||
67 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 67 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
68 | "is_organization": true, | 68 | "is_organization": true, | ||
69 | "name": "observatorio-metropolitano-centrogeo", | 69 | "name": "observatorio-metropolitano-centrogeo", | ||
70 | "state": "active", | 70 | "state": "active", | ||
71 | "title": "Observatorio Metropolitano CentroGeo", | 71 | "title": "Observatorio Metropolitano CentroGeo", | ||
72 | "type": "organization" | 72 | "type": "organization" | ||
73 | }, | 73 | }, | ||
74 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 74 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
75 | "private": false, | 75 | "private": false, | ||
76 | "relationships_as_object": [], | 76 | "relationships_as_object": [], | ||
77 | "relationships_as_subject": [], | 77 | "relationships_as_subject": [], | ||
t | 78 | "resources": [], | t | 78 | "resources": [ |
79 | { | ||||
80 | "cache_last_updated": null, | ||||
81 | "cache_url": null, | ||||
82 | "created": "2025-10-10T07:19:36.451491", | ||||
83 | "datastore_active": false, | ||||
84 | "description": "Understanding and predicting outbreaks of | ||||
85 | epidemics has become a major focus since COVID-19. Researchers have | ||||
86 | explored various methods, from basic curve fitting to complex machine | ||||
87 | learning techniques, to predict how the virus spreads. One promising | ||||
88 | method is the Network Inference-based Prediction Algorithm (NIPA), | ||||
89 | which uses the SIR-model and the least absolute shrinkage and | ||||
90 | selection operator to estimate how the infections spread over | ||||
91 | different regions. However, fine-tuning the regularization parameter | ||||
92 | of NIPA can be complicated because of the time-consuming process and | ||||
93 | sub-optimal result of k-fold Cross-Validation (CV). To overcome this, | ||||
94 | we suggest using Simulated Annealing (SA) to optimize NIPA's | ||||
95 | regularization parameter and find an optimal value for the curing | ||||
96 | probability. Our study aims to combine SA with NIPA to make the | ||||
97 | process of choosing the optimal value for the parameters more | ||||
98 | effective. The results of the research show that the accuracy is | ||||
99 | improved and therefore indicate that SA is an acceptable alternative | ||||
100 | to CV, regardless of the computation time being higher.", | ||||
101 | "format": "HTML", | ||||
102 | "hash": "", | ||||
103 | "id": "eaf6c26d-12fb-4e15-9ee0-3e4a0d331c95", | ||||
104 | "last_modified": null, | ||||
105 | "metadata_modified": "2025-10-10T07:19:36.431749", | ||||
106 | "mimetype": null, | ||||
107 | "mimetype_inner": null, | ||||
108 | "name": "Enhancing Epidemic Prediction Using Simulated Annealing | ||||
109 | for Parameter Optimization in Infection Network Inference", | ||||
110 | "package_id": "425b47e2-09ca-4fc4-8a3f-bc5e7ff09015", | ||||
111 | "position": 0, | ||||
112 | "resource_type": null, | ||||
113 | "size": null, | ||||
114 | "state": "active", | ||||
115 | "url": "https://doi.org/10.1109/acai63924.2024.10899726", | ||||
116 | "url_type": null | ||||
117 | } | ||||
118 | ], | ||||
79 | "state": "active", | 119 | "state": "active", | ||
80 | "tags": [ | 120 | "tags": [ | ||
81 | { | 121 | { | ||
82 | "display_name": "annealing-glass", | 122 | "display_name": "annealing-glass", | ||
83 | "id": "cd87c078-e741-4bb5-a279-d53baa34281b", | 123 | "id": "cd87c078-e741-4bb5-a279-d53baa34281b", | ||
84 | "name": "annealing-glass", | 124 | "name": "annealing-glass", | ||
85 | "state": "active", | 125 | "state": "active", | ||
86 | "vocabulary_id": null | 126 | "vocabulary_id": null | ||
87 | }, | 127 | }, | ||
88 | { | 128 | { | ||
89 | "display_name": "artificial-intelligence", | 129 | "display_name": "artificial-intelligence", | ||
90 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 130 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
91 | "name": "artificial-intelligence", | 131 | "name": "artificial-intelligence", | ||
92 | "state": "active", | 132 | "state": "active", | ||
93 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
94 | }, | 134 | }, | ||
95 | { | 135 | { | ||
96 | "display_name": "computer-science", | 136 | "display_name": "computer-science", | ||
97 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 137 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
98 | "name": "computer-science", | 138 | "name": "computer-science", | ||
99 | "state": "active", | 139 | "state": "active", | ||
100 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
101 | }, | 141 | }, | ||
102 | { | 142 | { | ||
103 | "display_name": "inference", | 143 | "display_name": "inference", | ||
104 | "id": "5d9573e8-9e5e-40ed-be34-fc77e6a2076b", | 144 | "id": "5d9573e8-9e5e-40ed-be34-fc77e6a2076b", | ||
105 | "name": "inference", | 145 | "name": "inference", | ||
106 | "state": "active", | 146 | "state": "active", | ||
107 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
108 | }, | 148 | }, | ||
109 | { | 149 | { | ||
110 | "display_name": "machine-learning", | 150 | "display_name": "machine-learning", | ||
111 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | 151 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | ||
112 | "name": "machine-learning", | 152 | "name": "machine-learning", | ||
113 | "state": "active", | 153 | "state": "active", | ||
114 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
115 | }, | 155 | }, | ||
116 | { | 156 | { | ||
117 | "display_name": "mathematical-optimization", | 157 | "display_name": "mathematical-optimization", | ||
118 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 158 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
119 | "name": "mathematical-optimization", | 159 | "name": "mathematical-optimization", | ||
120 | "state": "active", | 160 | "state": "active", | ||
121 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
122 | }, | 162 | }, | ||
123 | { | 163 | { | ||
124 | "display_name": "simulated-annealing", | 164 | "display_name": "simulated-annealing", | ||
125 | "id": "fb10debf-8675-47b3-8cdb-925f7b71f1c4", | 165 | "id": "fb10debf-8675-47b3-8cdb-925f7b71f1c4", | ||
126 | "name": "simulated-annealing", | 166 | "name": "simulated-annealing", | ||
127 | "state": "active", | 167 | "state": "active", | ||
128 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
129 | } | 169 | } | ||
130 | ], | 170 | ], | ||
131 | "title": "Enhancing Epidemic Prediction Using Simulated Annealing | 171 | "title": "Enhancing Epidemic Prediction Using Simulated Annealing | ||
132 | for Parameter Optimization in Infection Network Inference", | 172 | for Parameter Optimization in Infection Network Inference", | ||
133 | "type": "dataset", | 173 | "type": "dataset", | ||
134 | "url": "https://doi.org/10.1109/acai63924.2024.10899726", | 174 | "url": "https://doi.org/10.1109/acai63924.2024.10899726", | ||
135 | "version": null | 175 | "version": null | ||
136 | } | 176 | } |