Cambios
En el instante 11 de octubre de 2025, 1:23:47 UTC,
f | 1 | { | f | 1 | { |
2 | "author": "S Botello-Aceves, SI Valdez, A Hern\u00e1ndez-Aguirre", | 2 | "author": "S Botello-Aceves, SI Valdez, A Hern\u00e1ndez-Aguirre", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Cap\u00edtulo" | 8 | "value": "Cap\u00edtulo" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "43a1270e-7c7f-402b-b753-5b00c621d7b2", | 33 | "id": "43a1270e-7c7f-402b-b753-5b00c621d7b2", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-11T01:23:47.230030", | 39 | "metadata_created": "2025-10-11T01:23:47.230030", | ||
n | 40 | "metadata_modified": "2025-10-11T01:23:47.230038", | n | 40 | "metadata_modified": "2025-10-11T01:23:47.735727", |
41 | "name": "the-improvement-direction-mapping-method-a6ea05ad1324", | 41 | "name": "the-improvement-direction-mapping-method-a6ea05ad1324", | ||
42 | "notes": "The Improvement Direction Mapping (IDM) is a novel | 42 | "notes": "The Improvement Direction Mapping (IDM) is a novel | ||
43 | multi-objective local-search method, that independently steers a | 43 | multi-objective local-search method, that independently steers a | ||
44 | solution set towards promising regions by computing improvement | 44 | solution set towards promising regions by computing improvement | ||
45 | directions in the objective space and transform them, into the | 45 | directions in the objective space and transform them, into the | ||
46 | variable space, as search directions. The IDM algorithm consists of | 46 | variable space, as search directions. The IDM algorithm consists of | ||
47 | two main sub-tasks 1) the computation of the improvement directions in | 47 | two main sub-tasks 1) the computation of the improvement directions in | ||
48 | the objective space 2) the transformation of directions from the | 48 | the objective space 2) the transformation of directions from the | ||
49 | objective space to the variable space. The transformation from the | 49 | objective space to the variable space. The transformation from the | ||
50 | objective to the variable space is carried out via a pseudo-inverse of | 50 | objective to the variable space is carried out via a pseudo-inverse of | ||
51 | the Jacobian matrix. The goal of this paper is two fold: it introduces | 51 | the Jacobian matrix. The goal of this paper is two fold: it introduces | ||
52 | the main IDM algorithm and three approaches to determine improvement | 52 | the main IDM algorithm and three approaches to determine improvement | ||
53 | directions, and then it explores the trade-off of either approach by | 53 | directions, and then it explores the trade-off of either approach by | ||
54 | performing statistical analysis on the experimental results. The | 54 | performing statistical analysis on the experimental results. The | ||
55 | approaches are based on: 1) Pareto dominance, 2) aggregation | 55 | approaches are based on: 1) Pareto dominance, 2) aggregation | ||
56 | functions, and 3) indicator functions. A set of well-known benchmark | 56 | functions, and 3) indicator functions. A set of well-known benchmark | ||
57 | problems are used to compare the three proposed improvement directions | 57 | problems are used to compare the three proposed improvement directions | ||
58 | and the Directed Search method. This paper is devoted to introduce the | 58 | and the Directed Search method. This paper is devoted to introduce the | ||
59 | IDM algorithm for multi-objective optimization, nonetheless, the | 59 | IDM algorithm for multi-objective optimization, nonetheless, the | ||
60 | application of IDM for hybridizing stochastic-global-search algorithms | 60 | application of IDM for hybridizing stochastic-global-search algorithms | ||
61 | is straight forward.", | 61 | is straight forward.", | ||
n | 62 | "num_resources": 0, | n | 62 | "num_resources": 1, |
63 | "num_tags": 11, | 63 | "num_tags": 11, | ||
64 | "organization": { | 64 | "organization": { | ||
65 | "approval_status": "approved", | 65 | "approval_status": "approved", | ||
66 | "created": "2022-05-19T00:10:30.480393", | 66 | "created": "2022-05-19T00:10:30.480393", | ||
67 | "description": "Observatorio Metropolitano CentroGeo", | 67 | "description": "Observatorio Metropolitano CentroGeo", | ||
68 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 68 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
69 | "image_url": | 69 | "image_url": | ||
70 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 70 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
71 | "is_organization": true, | 71 | "is_organization": true, | ||
72 | "name": "observatorio-metropolitano-centrogeo", | 72 | "name": "observatorio-metropolitano-centrogeo", | ||
73 | "state": "active", | 73 | "state": "active", | ||
74 | "title": "Observatorio Metropolitano CentroGeo", | 74 | "title": "Observatorio Metropolitano CentroGeo", | ||
75 | "type": "organization" | 75 | "type": "organization" | ||
76 | }, | 76 | }, | ||
77 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 77 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
78 | "private": false, | 78 | "private": false, | ||
79 | "relationships_as_object": [], | 79 | "relationships_as_object": [], | ||
80 | "relationships_as_subject": [], | 80 | "relationships_as_subject": [], | ||
t | 81 | "resources": [], | t | 81 | "resources": [ |
82 | { | ||||
83 | "cache_last_updated": null, | ||||
84 | "cache_url": null, | ||||
85 | "created": "2025-10-11T01:23:47.765886", | ||||
86 | "datastore_active": false, | ||||
87 | "description": "The Improvement Direction Mapping (IDM) is a | ||||
88 | novel multi-objective local-search method, that independently steers a | ||||
89 | solution set towards promising regions by computing improvement | ||||
90 | directions in the objective space and transform them, into the | ||||
91 | variable space, as search directions. The IDM algorithm consists of | ||||
92 | two main sub-tasks 1) the computation of the improvement directions in | ||||
93 | the objective space 2) the transformation of directions from the | ||||
94 | objective space to the variable space. The transformation from the | ||||
95 | objective to the variable space is carried out via a pseudo-inverse of | ||||
96 | the Jacobian matrix. The goal of this paper is two fold: it introduces | ||||
97 | the main IDM algorithm and three approaches to determine improvement | ||||
98 | directions, and then it explores the trade-off of either approach by | ||||
99 | performing statistical analysis on the experimental results. The | ||||
100 | approaches are based on: 1) Pareto dominance, 2) aggregation | ||||
101 | functions, and 3) indicator functions. A set of well-known benchmark | ||||
102 | problems are used to compare the three proposed improvement directions | ||||
103 | and the Directed Search method. This paper is devoted to introduce the | ||||
104 | IDM algorithm for multi-objective optimization, nonetheless, the | ||||
105 | application of IDM for hybridizing stochastic-global-search algorithms | ||||
106 | is straight forward.", | ||||
107 | "format": "HTML", | ||||
108 | "hash": "", | ||||
109 | "id": "ed7ca297-1f6f-4400-9385-103a9dda4f61", | ||||
110 | "last_modified": null, | ||||
111 | "metadata_modified": "2025-10-11T01:23:47.739940", | ||||
112 | "mimetype": null, | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "The improvement direction mapping method", | ||||
115 | "package_id": "43a1270e-7c7f-402b-b753-5b00c621d7b2", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": null, | ||||
119 | "state": "active", | ||||
120 | "url": "https://doi.org/10.1007/978-3-030-60884-2_20", | ||||
121 | "url_type": null | ||||
122 | } | ||||
123 | ], | ||||
82 | "state": "active", | 124 | "state": "active", | ||
83 | "tags": [ | 125 | "tags": [ | ||
84 | { | 126 | { | ||
85 | "display_name": "algorithm", | 127 | "display_name": "algorithm", | ||
86 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 128 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
87 | "name": "algorithm", | 129 | "name": "algorithm", | ||
88 | "state": "active", | 130 | "state": "active", | ||
89 | "vocabulary_id": null | 131 | "vocabulary_id": null | ||
90 | }, | 132 | }, | ||
91 | { | 133 | { | ||
92 | "display_name": "benchmark-surveying", | 134 | "display_name": "benchmark-surveying", | ||
93 | "id": "d80426c1-17f9-4c4c-b192-367083726326", | 135 | "id": "d80426c1-17f9-4c4c-b192-367083726326", | ||
94 | "name": "benchmark-surveying", | 136 | "name": "benchmark-surveying", | ||
95 | "state": "active", | 137 | "state": "active", | ||
96 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
97 | }, | 139 | }, | ||
98 | { | 140 | { | ||
99 | "display_name": "computation", | 141 | "display_name": "computation", | ||
100 | "id": "7360e5e0-ae0d-4cd2-8974-a4f49ac17663", | 142 | "id": "7360e5e0-ae0d-4cd2-8974-a4f49ac17663", | ||
101 | "name": "computation", | 143 | "name": "computation", | ||
102 | "state": "active", | 144 | "state": "active", | ||
103 | "vocabulary_id": null | 145 | "vocabulary_id": null | ||
104 | }, | 146 | }, | ||
105 | { | 147 | { | ||
106 | "display_name": "computer-science", | 148 | "display_name": "computer-science", | ||
107 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 149 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
108 | "name": "computer-science", | 150 | "name": "computer-science", | ||
109 | "state": "active", | 151 | "state": "active", | ||
110 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
111 | }, | 153 | }, | ||
112 | { | 154 | { | ||
113 | "display_name": "inverse", | 155 | "display_name": "inverse", | ||
114 | "id": "d9bbeff7-d7cb-40ef-9ea0-76e28b5db619", | 156 | "id": "d9bbeff7-d7cb-40ef-9ea0-76e28b5db619", | ||
115 | "name": "inverse", | 157 | "name": "inverse", | ||
116 | "state": "active", | 158 | "state": "active", | ||
117 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
118 | }, | 160 | }, | ||
119 | { | 161 | { | ||
120 | "display_name": "jacobian-matrix-and-determinant", | 162 | "display_name": "jacobian-matrix-and-determinant", | ||
121 | "id": "10c7654f-10d8-48ae-b05c-0fc603b5212b", | 163 | "id": "10c7654f-10d8-48ae-b05c-0fc603b5212b", | ||
122 | "name": "jacobian-matrix-and-determinant", | 164 | "name": "jacobian-matrix-and-determinant", | ||
123 | "state": "active", | 165 | "state": "active", | ||
124 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
125 | }, | 167 | }, | ||
126 | { | 168 | { | ||
127 | "display_name": "mathematical-optimization", | 169 | "display_name": "mathematical-optimization", | ||
128 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 170 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
129 | "name": "mathematical-optimization", | 171 | "name": "mathematical-optimization", | ||
130 | "state": "active", | 172 | "state": "active", | ||
131 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
132 | }, | 174 | }, | ||
133 | { | 175 | { | ||
134 | "display_name": "pareto-principle", | 176 | "display_name": "pareto-principle", | ||
135 | "id": "1ee6143a-1062-4117-989d-0ba641dcda3c", | 177 | "id": "1ee6143a-1062-4117-989d-0ba641dcda3c", | ||
136 | "name": "pareto-principle", | 178 | "name": "pareto-principle", | ||
137 | "state": "active", | 179 | "state": "active", | ||
138 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
139 | }, | 181 | }, | ||
140 | { | 182 | { | ||
141 | "display_name": "set-abstract-data-type", | 183 | "display_name": "set-abstract-data-type", | ||
142 | "id": "b2cf6bcc-6aa2-4a45-9c63-4066f4e32845", | 184 | "id": "b2cf6bcc-6aa2-4a45-9c63-4066f4e32845", | ||
143 | "name": "set-abstract-data-type", | 185 | "name": "set-abstract-data-type", | ||
144 | "state": "active", | 186 | "state": "active", | ||
145 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
146 | }, | 188 | }, | ||
147 | { | 189 | { | ||
148 | "display_name": "transformation-genetics", | 190 | "display_name": "transformation-genetics", | ||
149 | "id": "d6c1e96d-e50c-471c-a188-2d64178d758a", | 191 | "id": "d6c1e96d-e50c-471c-a188-2d64178d758a", | ||
150 | "name": "transformation-genetics", | 192 | "name": "transformation-genetics", | ||
151 | "state": "active", | 193 | "state": "active", | ||
152 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
153 | }, | 195 | }, | ||
154 | { | 196 | { | ||
155 | "display_name": "variable-mathematics", | 197 | "display_name": "variable-mathematics", | ||
156 | "id": "eae95365-232f-4ce5-84c5-8e363cc950b7", | 198 | "id": "eae95365-232f-4ce5-84c5-8e363cc950b7", | ||
157 | "name": "variable-mathematics", | 199 | "name": "variable-mathematics", | ||
158 | "state": "active", | 200 | "state": "active", | ||
159 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
160 | } | 202 | } | ||
161 | ], | 203 | ], | ||
162 | "title": "The improvement direction mapping method", | 204 | "title": "The improvement direction mapping method", | ||
163 | "type": "dataset", | 205 | "type": "dataset", | ||
164 | "url": "https://doi.org/10.1007/978-3-030-60884-2_20", | 206 | "url": "https://doi.org/10.1007/978-3-030-60884-2_20", | ||
165 | "version": null | 207 | "version": null | ||
166 | } | 208 | } |