Cambios
En el instante 11 de octubre de 2025, 1:23:11 UTC,
-
Añadido recurso Roughness Parameter Estimation for flood numerical simulation using Differential Evolution a Roughness Parameter Estimation for flood numerical simulation using Differential Evolution
f | 1 | { | f | 1 | { |
2 | "author": "H Esqueda, SI Valdez, S Botello", | 2 | "author": "H Esqueda, SI Valdez, S Botello", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Conferencia" | 8 | "value": "Conferencia" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "909955ff-f17e-42eb-a811-7a59f931c94e", | 33 | "id": "909955ff-f17e-42eb-a811-7a59f931c94e", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-11T01:23:10.893250", | 39 | "metadata_created": "2025-10-11T01:23:10.893250", | ||
n | 40 | "metadata_modified": "2025-10-11T01:23:10.893258", | n | 40 | "metadata_modified": "2025-10-11T01:23:11.435349", |
41 | "name": | 41 | "name": | ||
42 | or-flood-numerical-simulation-using-differential-evolut-dbbc8bd7a29c", | 42 | or-flood-numerical-simulation-using-differential-evolut-dbbc8bd7a29c", | ||
43 | "notes": "A methodology to estimate parameters necessary to carry | 43 | "notes": "A methodology to estimate parameters necessary to carry | ||
44 | out numerical simulations of flood phenomena is presented, that may be | 44 | out numerical simulations of flood phenomena is presented, that may be | ||
45 | useful for detecting flood-prone areas. Geospatial information | 45 | useful for detecting flood-prone areas. Geospatial information | ||
46 | contained in different databases is used as inputs, numerical | 46 | contained in different databases is used as inputs, numerical | ||
47 | simulation tools of hydrodynamic flooding phenomenon by solving the | 47 | simulation tools of hydrodynamic flooding phenomenon by solving the | ||
48 | shallow water equations, and stochastic optimization algorithms. The | 48 | shallow water equations, and stochastic optimization algorithms. The | ||
49 | objective is to find certain parameters of the simulation model that | 49 | objective is to find certain parameters of the simulation model that | ||
50 | have a high uncertainty degree through evolutionary algorithms, | 50 | have a high uncertainty degree through evolutionary algorithms, | ||
51 | comparing the simulations carried out with satellite images that | 51 | comparing the simulations carried out with satellite images that | ||
52 | monitor the behavior of rivers and streams in areas that may be | 52 | monitor the behavior of rivers and streams in areas that may be | ||
53 | susceptible to flooding. In this work, the Manning roughness | 53 | susceptible to flooding. In this work, the Manning roughness | ||
54 | coefficients were determined according to the soil usage identified in | 54 | coefficients were determined according to the soil usage identified in | ||
55 | a synthetic example, in order to evaluate the usefulness and viability | 55 | a synthetic example, in order to evaluate the usefulness and viability | ||
56 | of the methodology proposed.", | 56 | of the methodology proposed.", | ||
n | 57 | "num_resources": 0, | n | 57 | "num_resources": 1, |
58 | "num_tags": 13, | 58 | "num_tags": 13, | ||
59 | "organization": { | 59 | "organization": { | ||
60 | "approval_status": "approved", | 60 | "approval_status": "approved", | ||
61 | "created": "2022-05-19T00:10:30.480393", | 61 | "created": "2022-05-19T00:10:30.480393", | ||
62 | "description": "Observatorio Metropolitano CentroGeo", | 62 | "description": "Observatorio Metropolitano CentroGeo", | ||
63 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 63 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
64 | "image_url": | 64 | "image_url": | ||
65 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 65 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
66 | "is_organization": true, | 66 | "is_organization": true, | ||
67 | "name": "observatorio-metropolitano-centrogeo", | 67 | "name": "observatorio-metropolitano-centrogeo", | ||
68 | "state": "active", | 68 | "state": "active", | ||
69 | "title": "Observatorio Metropolitano CentroGeo", | 69 | "title": "Observatorio Metropolitano CentroGeo", | ||
70 | "type": "organization" | 70 | "type": "organization" | ||
71 | }, | 71 | }, | ||
72 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 72 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
73 | "private": false, | 73 | "private": false, | ||
74 | "relationships_as_object": [], | 74 | "relationships_as_object": [], | ||
75 | "relationships_as_subject": [], | 75 | "relationships_as_subject": [], | ||
t | 76 | "resources": [], | t | 76 | "resources": [ |
77 | { | ||||
78 | "cache_last_updated": null, | ||||
79 | "cache_url": null, | ||||
80 | "created": "2025-10-11T01:23:11.477963", | ||||
81 | "datastore_active": false, | ||||
82 | "description": "A methodology to estimate parameters necessary | ||||
83 | to carry out numerical simulations of flood phenomena is presented, | ||||
84 | that may be useful for detecting flood-prone areas. Geospatial | ||||
85 | information contained in different databases is used as inputs, | ||||
86 | numerical simulation tools of hydrodynamic flooding phenomenon by | ||||
87 | solving the shallow water equations, and stochastic optimization | ||||
88 | algorithms. The objective is to find certain parameters of the | ||||
89 | simulation model that have a high uncertainty degree through | ||||
90 | evolutionary algorithms, comparing the simulations carried out with | ||||
91 | satellite images that monitor the behavior of rivers and streams in | ||||
92 | areas that may be susceptible to flooding. In this work, the Manning | ||||
93 | roughness coefficients were determined according to the soil usage | ||||
94 | identified in a synthetic example, in order to evaluate the usefulness | ||||
95 | and viability of the methodology proposed.", | ||||
96 | "format": "HTML", | ||||
97 | "hash": "", | ||||
98 | "id": "494f614b-75ae-4bd5-80c0-77c4620fab2b", | ||||
99 | "last_modified": null, | ||||
100 | "metadata_modified": "2025-10-11T01:23:11.439983", | ||||
101 | "mimetype": null, | ||||
102 | "mimetype_inner": null, | ||||
103 | "name": "Roughness Parameter Estimation for flood numerical | ||||
104 | simulation using Differential Evolution", | ||||
105 | "package_id": "909955ff-f17e-42eb-a811-7a59f931c94e", | ||||
106 | "position": 0, | ||||
107 | "resource_type": null, | ||||
108 | "size": null, | ||||
109 | "state": "active", | ||||
110 | "url": "https://doi.org/10.1109/enc56672.2022.9882946", | ||||
111 | "url_type": null | ||||
112 | } | ||||
113 | ], | ||||
77 | "state": "active", | 114 | "state": "active", | ||
78 | "tags": [ | 115 | "tags": [ | ||
79 | { | 116 | { | ||
80 | "display_name": "algorithm", | 117 | "display_name": "algorithm", | ||
81 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 118 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
82 | "name": "algorithm", | 119 | "name": "algorithm", | ||
83 | "state": "active", | 120 | "state": "active", | ||
84 | "vocabulary_id": null | 121 | "vocabulary_id": null | ||
85 | }, | 122 | }, | ||
86 | { | 123 | { | ||
87 | "display_name": "applied-mathematics", | 124 | "display_name": "applied-mathematics", | ||
88 | "id": "c01ae3d2-395d-4939-bdbe-020b9bc2091d", | 125 | "id": "c01ae3d2-395d-4939-bdbe-020b9bc2091d", | ||
89 | "name": "applied-mathematics", | 126 | "name": "applied-mathematics", | ||
90 | "state": "active", | 127 | "state": "active", | ||
91 | "vocabulary_id": null | 128 | "vocabulary_id": null | ||
92 | }, | 129 | }, | ||
93 | { | 130 | { | ||
94 | "display_name": "computer-science", | 131 | "display_name": "computer-science", | ||
95 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 132 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
96 | "name": "computer-science", | 133 | "name": "computer-science", | ||
97 | "state": "active", | 134 | "state": "active", | ||
98 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
99 | }, | 136 | }, | ||
100 | { | 137 | { | ||
101 | "display_name": "computer-simulation", | 138 | "display_name": "computer-simulation", | ||
102 | "id": "2d81e2e8-3d19-4bed-9358-c443aba9d329", | 139 | "id": "2d81e2e8-3d19-4bed-9358-c443aba9d329", | ||
103 | "name": "computer-simulation", | 140 | "name": "computer-simulation", | ||
104 | "state": "active", | 141 | "state": "active", | ||
105 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
106 | }, | 143 | }, | ||
107 | { | 144 | { | ||
108 | "display_name": "data-mining", | 145 | "display_name": "data-mining", | ||
109 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | 146 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | ||
110 | "name": "data-mining", | 147 | "name": "data-mining", | ||
111 | "state": "active", | 148 | "state": "active", | ||
112 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
113 | }, | 150 | }, | ||
114 | { | 151 | { | ||
115 | "display_name": "differential-evolution", | 152 | "display_name": "differential-evolution", | ||
116 | "id": "0daf7648-6f33-43d3-a1d0-bea11d864463", | 153 | "id": "0daf7648-6f33-43d3-a1d0-bea11d864463", | ||
117 | "name": "differential-evolution", | 154 | "name": "differential-evolution", | ||
118 | "state": "active", | 155 | "state": "active", | ||
119 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
120 | }, | 157 | }, | ||
121 | { | 158 | { | ||
122 | "display_name": "flood-myth", | 159 | "display_name": "flood-myth", | ||
123 | "id": "0a644150-70b0-4e2a-b28d-09dc905031fa", | 160 | "id": "0a644150-70b0-4e2a-b28d-09dc905031fa", | ||
124 | "name": "flood-myth", | 161 | "name": "flood-myth", | ||
125 | "state": "active", | 162 | "state": "active", | ||
126 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
127 | }, | 164 | }, | ||
128 | { | 165 | { | ||
129 | "display_name": "flooding-psychology", | 166 | "display_name": "flooding-psychology", | ||
130 | "id": "03183edf-5096-4537-b1f3-cd66f176aad7", | 167 | "id": "03183edf-5096-4537-b1f3-cd66f176aad7", | ||
131 | "name": "flooding-psychology", | 168 | "name": "flooding-psychology", | ||
132 | "state": "active", | 169 | "state": "active", | ||
133 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
134 | }, | 171 | }, | ||
135 | { | 172 | { | ||
136 | "display_name": "geospatial-analysis", | 173 | "display_name": "geospatial-analysis", | ||
137 | "id": "acd92b42-66d6-40aa-81b1-f0129fe5c6a9", | 174 | "id": "acd92b42-66d6-40aa-81b1-f0129fe5c6a9", | ||
138 | "name": "geospatial-analysis", | 175 | "name": "geospatial-analysis", | ||
139 | "state": "active", | 176 | "state": "active", | ||
140 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
141 | }, | 178 | }, | ||
142 | { | 179 | { | ||
143 | "display_name": "mathematical-optimization", | 180 | "display_name": "mathematical-optimization", | ||
144 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 181 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
145 | "name": "mathematical-optimization", | 182 | "name": "mathematical-optimization", | ||
146 | "state": "active", | 183 | "state": "active", | ||
147 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
148 | }, | 185 | }, | ||
149 | { | 186 | { | ||
150 | "display_name": "numerical-analysis", | 187 | "display_name": "numerical-analysis", | ||
151 | "id": "d7f2fb7e-128e-4263-9530-e22df53726bc", | 188 | "id": "d7f2fb7e-128e-4263-9530-e22df53726bc", | ||
152 | "name": "numerical-analysis", | 189 | "name": "numerical-analysis", | ||
153 | "state": "active", | 190 | "state": "active", | ||
154 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
155 | }, | 192 | }, | ||
156 | { | 193 | { | ||
157 | "display_name": "simulation-modeling", | 194 | "display_name": "simulation-modeling", | ||
158 | "id": "8ae08f95-034c-497f-b06b-1aa7dc011464", | 195 | "id": "8ae08f95-034c-497f-b06b-1aa7dc011464", | ||
159 | "name": "simulation-modeling", | 196 | "name": "simulation-modeling", | ||
160 | "state": "active", | 197 | "state": "active", | ||
161 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
162 | }, | 199 | }, | ||
163 | { | 200 | { | ||
164 | "display_name": "stochastic-simulation", | 201 | "display_name": "stochastic-simulation", | ||
165 | "id": "1041b077-4d28-4c5c-aa15-e7e034c8455a", | 202 | "id": "1041b077-4d28-4c5c-aa15-e7e034c8455a", | ||
166 | "name": "stochastic-simulation", | 203 | "name": "stochastic-simulation", | ||
167 | "state": "active", | 204 | "state": "active", | ||
168 | "vocabulary_id": null | 205 | "vocabulary_id": null | ||
169 | } | 206 | } | ||
170 | ], | 207 | ], | ||
171 | "title": "Roughness Parameter Estimation for flood numerical | 208 | "title": "Roughness Parameter Estimation for flood numerical | ||
172 | simulation using Differential Evolution", | 209 | simulation using Differential Evolution", | ||
173 | "type": "dataset", | 210 | "type": "dataset", | ||
174 | "url": "https://doi.org/10.1109/enc56672.2022.9882946", | 211 | "url": "https://doi.org/10.1109/enc56672.2022.9882946", | ||
175 | "version": null | 212 | "version": null | ||
176 | } | 213 | } |