Cambios
En el instante 11 de octubre de 2025, 1:22:41 UTC,
-
Añadido recurso The Bayesian operating characteristic curve for feature analysis applied to urban land cover change a The Bayesian operating characteristic curve for feature analysis applied to urban land cover change
f | 1 | { | f | 1 | { |
2 | "author": "R Lopez-Farias, SI Valdez, C Lara-Alvarez, RG Pontius | 2 | "author": "R Lopez-Farias, SI Valdez, C Lara-Alvarez, RG Pontius | ||
3 | Jr", | 3 | Jr", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "Publicaci\u00f3n", | 8 | "key": "Publicaci\u00f3n", | ||
9 | "value": "Revista" | 9 | "value": "Revista" | ||
10 | }, | 10 | }, | ||
11 | { | 11 | { | ||
12 | "key": "Tipo", | 12 | "key": "Tipo", | ||
13 | "value": "Publicaci\u00f3n" | 13 | "value": "Publicaci\u00f3n" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "groups": [ | 16 | "groups": [ | ||
17 | { | 17 | { | ||
18 | "description": "Este grupo integra las publicaciones | 18 | "description": "Este grupo integra las publicaciones | ||
19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
21 | presentados en congresos nacionales e internacionales, manuscritos en | 21 | presentados en congresos nacionales e internacionales, manuscritos en | ||
22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
27 | "display_name": "Publicaciones", | 27 | "display_name": "Publicaciones", | ||
28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
29 | "image_display_url": "", | 29 | "image_display_url": "", | ||
30 | "name": "publicaciones", | 30 | "name": "publicaciones", | ||
31 | "title": "Publicaciones" | 31 | "title": "Publicaciones" | ||
32 | } | 32 | } | ||
33 | ], | 33 | ], | ||
34 | "id": "bd2c2a54-91c1-43f4-af42-46e7438cacca", | 34 | "id": "bd2c2a54-91c1-43f4-af42-46e7438cacca", | ||
35 | "isopen": false, | 35 | "isopen": false, | ||
36 | "license_id": null, | 36 | "license_id": null, | ||
37 | "license_title": null, | 37 | "license_title": null, | ||
38 | "maintainer": null, | 38 | "maintainer": null, | ||
39 | "maintainer_email": null, | 39 | "maintainer_email": null, | ||
40 | "metadata_created": "2025-10-11T01:22:40.432379", | 40 | "metadata_created": "2025-10-11T01:22:40.432379", | ||
n | 41 | "metadata_modified": "2025-10-11T01:22:40.432391", | n | 41 | "metadata_modified": "2025-10-11T01:22:41.062904", |
42 | "name": | 42 | "name": | ||
43 | istic-curve-for-feature-analysis-applied-to-urban-land--09aa65aded77", | 43 | istic-curve-for-feature-analysis-applied-to-urban-land--09aa65aded77", | ||
44 | "notes": "Radio frequency (RF) spectrum sensing is critical for | 44 | "notes": "Radio frequency (RF) spectrum sensing is critical for | ||
45 | applications requiring precise object and posture detection and | 45 | applications requiring precise object and posture detection and | ||
46 | classification. This survey aims to provide a focused review of | 46 | classification. This survey aims to provide a focused review of | ||
47 | context-aware RF-based sensing, emphasizing its principles, | 47 | context-aware RF-based sensing, emphasizing its principles, | ||
48 | advancements, and challenges. It specifically examines | 48 | advancements, and challenges. It specifically examines | ||
49 | state-of-the-art techniques such as phased array radar, synthetic | 49 | state-of-the-art techniques such as phased array radar, synthetic | ||
50 | aperture radar, and passive RF sensing, highlighting their | 50 | aperture radar, and passive RF sensing, highlighting their | ||
51 | methodologies, data input domains, and spatial diversity strategies. | 51 | methodologies, data input domains, and spatial diversity strategies. | ||
52 | The paper evaluates feature extraction methods and machine learning | 52 | The paper evaluates feature extraction methods and machine learning | ||
53 | approaches used for detection and classification, presenting their | 53 | approaches used for detection and classification, presenting their | ||
54 | accuracy metrics across various applications. Additionally, it | 54 | accuracy metrics across various applications. Additionally, it | ||
55 | investigates the integration of RF sensing with other modalities, such | 55 | investigates the integration of RF sensing with other modalities, such | ||
56 | as inertial sensors, to enhance context awareness and improve | 56 | as inertial sensors, to enhance context awareness and improve | ||
57 | performance. Challenges like environmental interference, scalability, | 57 | performance. Challenges like environmental interference, scalability, | ||
58 | and regulatory constraints are addressed, with insights into | 58 | and regulatory constraints are addressed, with insights into | ||
59 | real-world mitigation strategies. The survey concludes by identifying | 59 | real-world mitigation strategies. The survey concludes by identifying | ||
60 | emerging trends, practical applications, and future directions for | 60 | emerging trends, practical applications, and future directions for | ||
61 | advancing RF sensing technologies.", | 61 | advancing RF sensing technologies.", | ||
n | 62 | "num_resources": 0, | n | 62 | "num_resources": 1, |
63 | "num_tags": 10, | 63 | "num_tags": 10, | ||
64 | "organization": { | 64 | "organization": { | ||
65 | "approval_status": "approved", | 65 | "approval_status": "approved", | ||
66 | "created": "2022-05-19T00:10:30.480393", | 66 | "created": "2022-05-19T00:10:30.480393", | ||
67 | "description": "Observatorio Metropolitano CentroGeo", | 67 | "description": "Observatorio Metropolitano CentroGeo", | ||
68 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 68 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
69 | "image_url": | 69 | "image_url": | ||
70 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 70 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
71 | "is_organization": true, | 71 | "is_organization": true, | ||
72 | "name": "observatorio-metropolitano-centrogeo", | 72 | "name": "observatorio-metropolitano-centrogeo", | ||
73 | "state": "active", | 73 | "state": "active", | ||
74 | "title": "Observatorio Metropolitano CentroGeo", | 74 | "title": "Observatorio Metropolitano CentroGeo", | ||
75 | "type": "organization" | 75 | "type": "organization" | ||
76 | }, | 76 | }, | ||
77 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 77 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
78 | "private": false, | 78 | "private": false, | ||
79 | "relationships_as_object": [], | 79 | "relationships_as_object": [], | ||
80 | "relationships_as_subject": [], | 80 | "relationships_as_subject": [], | ||
t | 81 | "resources": [], | t | 81 | "resources": [ |
82 | { | ||||
83 | "cache_last_updated": null, | ||||
84 | "cache_url": null, | ||||
85 | "created": "2025-10-11T01:22:41.126667", | ||||
86 | "datastore_active": false, | ||||
87 | "description": "Radio frequency (RF) spectrum sensing is | ||||
88 | critical for applications requiring precise object and posture | ||||
89 | detection and classification. This survey aims to provide a focused | ||||
90 | review of context-aware RF-based sensing, emphasizing its principles, | ||||
91 | advancements, and challenges. It specifically examines | ||||
92 | state-of-the-art techniques such as phased array radar, synthetic | ||||
93 | aperture radar, and passive RF sensing, highlighting their | ||||
94 | methodologies, data input domains, and spatial diversity strategies. | ||||
95 | The paper evaluates feature extraction methods and machine learning | ||||
96 | approaches used for detection and classification, presenting their | ||||
97 | accuracy metrics across various applications. Additionally, it | ||||
98 | investigates the integration of RF sensing with other modalities, such | ||||
99 | as inertial sensors, to enhance context awareness and improve | ||||
100 | performance. Challenges like environmental interference, scalability, | ||||
101 | and regulatory constraints are addressed, with insights into | ||||
102 | real-world mitigation strategies. The survey concludes by identifying | ||||
103 | emerging trends, practical applications, and future directions for | ||||
104 | advancing RF sensing technologies.", | ||||
105 | "format": "HTML", | ||||
106 | "hash": "", | ||||
107 | "id": "df64a1c5-8d0f-4e42-afd8-e1a391ce00d7", | ||||
108 | "last_modified": null, | ||||
109 | "metadata_modified": "2025-10-11T01:22:41.075478", | ||||
110 | "mimetype": null, | ||||
111 | "mimetype_inner": null, | ||||
112 | "name": "The Bayesian operating characteristic curve for feature | ||||
113 | analysis applied to urban land cover change", | ||||
114 | "package_id": "bd2c2a54-91c1-43f4-af42-46e7438cacca", | ||||
115 | "position": 0, | ||||
116 | "resource_type": null, | ||||
117 | "size": null, | ||||
118 | "state": "active", | ||||
119 | "url": "https://doi.org/10.1016/j.envsoft.2025.106688", | ||||
120 | "url_type": null | ||||
121 | } | ||||
122 | ], | ||||
82 | "state": "active", | 123 | "state": "active", | ||
83 | "tags": [ | 124 | "tags": [ | ||
84 | { | 125 | { | ||
85 | "display_name": "computer-science", | 126 | "display_name": "computer-science", | ||
86 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 127 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
87 | "name": "computer-science", | 128 | "name": "computer-science", | ||
88 | "state": "active", | 129 | "state": "active", | ||
89 | "vocabulary_id": null | 130 | "vocabulary_id": null | ||
90 | }, | 131 | }, | ||
91 | { | 132 | { | ||
92 | "display_name": "context-archaeology", | 133 | "display_name": "context-archaeology", | ||
93 | "id": "a031c0ee-d17a-4f2b-a798-26d36b194438", | 134 | "id": "a031c0ee-d17a-4f2b-a798-26d36b194438", | ||
94 | "name": "context-archaeology", | 135 | "name": "context-archaeology", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
97 | }, | 138 | }, | ||
98 | { | 139 | { | ||
99 | "display_name": "data-science", | 140 | "display_name": "data-science", | ||
100 | "id": "468c4e82-ef0a-4119-b7cb-a3882df895bf", | 141 | "id": "468c4e82-ef0a-4119-b7cb-a3882df895bf", | ||
101 | "name": "data-science", | 142 | "name": "data-science", | ||
102 | "state": "active", | 143 | "state": "active", | ||
103 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
104 | }, | 145 | }, | ||
105 | { | 146 | { | ||
106 | "display_name": "modalities", | 147 | "display_name": "modalities", | ||
107 | "id": "7cbe9d75-7c5c-4ab4-98af-c73db012d726", | 148 | "id": "7cbe9d75-7c5c-4ab4-98af-c73db012d726", | ||
108 | "name": "modalities", | 149 | "name": "modalities", | ||
109 | "state": "active", | 150 | "state": "active", | ||
110 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
111 | }, | 152 | }, | ||
112 | { | 153 | { | ||
113 | "display_name": "radar", | 154 | "display_name": "radar", | ||
114 | "id": "1a434cf6-0a54-4504-a241-6b1e24077b9d", | 155 | "id": "1a434cf6-0a54-4504-a241-6b1e24077b9d", | ||
115 | "name": "radar", | 156 | "name": "radar", | ||
116 | "state": "active", | 157 | "state": "active", | ||
117 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
118 | }, | 159 | }, | ||
119 | { | 160 | { | ||
120 | "display_name": "radio-frequency", | 161 | "display_name": "radio-frequency", | ||
121 | "id": "23d24443-691c-4f08-b948-53e6f42ae6e8", | 162 | "id": "23d24443-691c-4f08-b948-53e6f42ae6e8", | ||
122 | "name": "radio-frequency", | 163 | "name": "radio-frequency", | ||
123 | "state": "active", | 164 | "state": "active", | ||
124 | "vocabulary_id": null | 165 | "vocabulary_id": null | ||
125 | }, | 166 | }, | ||
126 | { | 167 | { | ||
127 | "display_name": "remote-sensing", | 168 | "display_name": "remote-sensing", | ||
128 | "id": "25a57491-2cd5-4e9d-8f58-2323eed48813", | 169 | "id": "25a57491-2cd5-4e9d-8f58-2323eed48813", | ||
129 | "name": "remote-sensing", | 170 | "name": "remote-sensing", | ||
130 | "state": "active", | 171 | "state": "active", | ||
131 | "vocabulary_id": null | 172 | "vocabulary_id": null | ||
132 | }, | 173 | }, | ||
133 | { | 174 | { | ||
134 | "display_name": "scalability", | 175 | "display_name": "scalability", | ||
135 | "id": "0c20066c-b269-4406-97d7-dbbb52d722ca", | 176 | "id": "0c20066c-b269-4406-97d7-dbbb52d722ca", | ||
136 | "name": "scalability", | 177 | "name": "scalability", | ||
137 | "state": "active", | 178 | "state": "active", | ||
138 | "vocabulary_id": null | 179 | "vocabulary_id": null | ||
139 | }, | 180 | }, | ||
140 | { | 181 | { | ||
141 | "display_name": "synthetic-aperture-radar", | 182 | "display_name": "synthetic-aperture-radar", | ||
142 | "id": "5b4d2a34-ee78-4172-850b-259317b187ef", | 183 | "id": "5b4d2a34-ee78-4172-850b-259317b187ef", | ||
143 | "name": "synthetic-aperture-radar", | 184 | "name": "synthetic-aperture-radar", | ||
144 | "state": "active", | 185 | "state": "active", | ||
145 | "vocabulary_id": null | 186 | "vocabulary_id": null | ||
146 | }, | 187 | }, | ||
147 | { | 188 | { | ||
148 | "display_name": "systems-engineering", | 189 | "display_name": "systems-engineering", | ||
149 | "id": "cbc4f68a-714a-40db-8d81-6ad5a9548a2e", | 190 | "id": "cbc4f68a-714a-40db-8d81-6ad5a9548a2e", | ||
150 | "name": "systems-engineering", | 191 | "name": "systems-engineering", | ||
151 | "state": "active", | 192 | "state": "active", | ||
152 | "vocabulary_id": null | 193 | "vocabulary_id": null | ||
153 | } | 194 | } | ||
154 | ], | 195 | ], | ||
155 | "title": "The Bayesian operating characteristic curve for feature | 196 | "title": "The Bayesian operating characteristic curve for feature | ||
156 | analysis applied to urban land cover change", | 197 | analysis applied to urban land cover change", | ||
157 | "type": "dataset", | 198 | "type": "dataset", | ||
158 | "url": "https://doi.org/10.1016/j.envsoft.2025.106688", | 199 | "url": "https://doi.org/10.1016/j.envsoft.2025.106688", | ||
159 | "version": null | 200 | "version": null | ||
160 | } | 201 | } |