Cambios
En el instante 11 de octubre de 2025, 1:23:46 UTC,
-
Añadido recurso A two-stage mono-and multi-objective method for the optimization of general UPS parallel manipulators a A two-stage mono-and multi-objective method for the optimization of general UPS parallel manipulators
f | 1 | { | f | 1 | { |
2 | "author": "A R\u00edos, EE Hern\u00e1ndez, SI Valdez", | 2 | "author": "A R\u00edos, EE Hern\u00e1ndez, SI Valdez", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Revista" | 8 | "value": "Revista" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "5afd5248-8545-4030-b1fc-4676ad69a84f", | 33 | "id": "5afd5248-8545-4030-b1fc-4676ad69a84f", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-11T01:23:45.484960", | 39 | "metadata_created": "2025-10-11T01:23:45.484960", | ||
n | 40 | "metadata_modified": "2025-10-11T01:23:45.484968", | n | 40 | "metadata_modified": "2025-10-11T01:23:46.003915", |
41 | "name": | 41 | "name": | ||
42 | tive-method-for-the-optimization-of-general-ups-paralle-2391ad7b4f16", | 42 | tive-method-for-the-optimization-of-general-ups-paralle-2391ad7b4f16", | ||
43 | "notes": "This paper introduces a two-stage method based on | 43 | "notes": "This paper introduces a two-stage method based on | ||
44 | bio-inspired algorithms for the design optimization of a class of | 44 | bio-inspired algorithms for the design optimization of a class of | ||
45 | general Stewart platforms. The first stage performs a mono-objective | 45 | general Stewart platforms. The first stage performs a mono-objective | ||
46 | optimization in order to reach, with sufficient dexterity, a regular | 46 | optimization in order to reach, with sufficient dexterity, a regular | ||
47 | target workspace while minimizing the elements\u2019 lengths. For this | 47 | target workspace while minimizing the elements\u2019 lengths. For this | ||
48 | optimization problem, we compare three bio-inspired algorithms: the | 48 | optimization problem, we compare three bio-inspired algorithms: the | ||
49 | Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the | 49 | Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the | ||
50 | Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The | 50 | Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The | ||
51 | second stage looks for the most suitable gains of a Proportional | 51 | second stage looks for the most suitable gains of a Proportional | ||
52 | Integral Derivative (PID) control via the minimization of two | 52 | Integral Derivative (PID) control via the minimization of two | ||
53 | conflicting objectives: one based on energy consumption and the | 53 | conflicting objectives: one based on energy consumption and the | ||
54 | tracking error of a target trajectory. To this effect, we compare two | 54 | tracking error of a target trajectory. To this effect, we compare two | ||
55 | multi-objective algorithms: the Multiobjective Evolutionary Algorithm | 55 | multi-objective algorithms: the Multiobjective Evolutionary Algorithm | ||
56 | based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic | 56 | based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic | ||
57 | Algorithm-III (NSGA-III). The main contributions lie in the | 57 | Algorithm-III (NSGA-III). The main contributions lie in the | ||
58 | optimization model, the proposal of a two-stage optimization method, | 58 | optimization model, the proposal of a two-stage optimization method, | ||
59 | and the findings of the performance of different bio-inspired | 59 | and the findings of the performance of different bio-inspired | ||
60 | algorithms for each stage. Furthermore, we show optimized designs | 60 | algorithms for each stage. Furthermore, we show optimized designs | ||
61 | delivered by the proposed method and provide directions for the | 61 | delivered by the proposed method and provide directions for the | ||
62 | best-performing algorithms through performance metrics and statistical | 62 | best-performing algorithms through performance metrics and statistical | ||
63 | hypothesis tests.", | 63 | hypothesis tests.", | ||
n | 64 | "num_resources": 0, | n | 64 | "num_resources": 1, |
65 | "num_tags": 12, | 65 | "num_tags": 12, | ||
66 | "organization": { | 66 | "organization": { | ||
67 | "approval_status": "approved", | 67 | "approval_status": "approved", | ||
68 | "created": "2022-05-19T00:10:30.480393", | 68 | "created": "2022-05-19T00:10:30.480393", | ||
69 | "description": "Observatorio Metropolitano CentroGeo", | 69 | "description": "Observatorio Metropolitano CentroGeo", | ||
70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
71 | "image_url": | 71 | "image_url": | ||
72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "observatorio-metropolitano-centrogeo", | 74 | "name": "observatorio-metropolitano-centrogeo", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "Observatorio Metropolitano CentroGeo", | 76 | "title": "Observatorio Metropolitano CentroGeo", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2025-10-11T01:23:46.037577", | ||||
88 | "datastore_active": false, | ||||
89 | "description": "This paper introduces a two-stage method based | ||||
90 | on bio-inspired algorithms for the design optimization of a class of | ||||
91 | general Stewart platforms. The first stage performs a mono-objective | ||||
92 | optimization in order to reach, with sufficient dexterity, a regular | ||||
93 | target workspace while minimizing the elements\u2019 lengths. For this | ||||
94 | optimization problem, we compare three bio-inspired algorithms: the | ||||
95 | Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the | ||||
96 | Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The | ||||
97 | second stage looks for the most suitable gains of a Proportional | ||||
98 | Integral Derivative (PID) control via the minimization of two | ||||
99 | conflicting objectives: one based on energy consumption and the | ||||
100 | tracking error of a target trajectory. To this effect, we compare two | ||||
101 | multi-objective algorithms: the Multiobjective Evolutionary Algorithm | ||||
102 | based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic | ||||
103 | Algorithm-III (NSGA-III). The main contributions lie in the | ||||
104 | optimization model, the proposal of a two-stage optimization method, | ||||
105 | and the findings of the performance of different bio-inspired | ||||
106 | algorithms for each stage. Furthermore, we show optimized designs | ||||
107 | delivered by the proposed method and provide directions for the | ||||
108 | best-performing algorithms through performance metrics and statistical | ||||
109 | hypothesis tests.", | ||||
110 | "format": "HTML", | ||||
111 | "hash": "", | ||||
112 | "id": "dcee62fe-69ab-4379-bd9c-e1ac9f59dc86", | ||||
113 | "last_modified": null, | ||||
114 | "metadata_modified": "2025-10-11T01:23:46.007960", | ||||
115 | "mimetype": null, | ||||
116 | "mimetype_inner": null, | ||||
117 | "name": "A two-stage mono-and multi-objective method for the | ||||
118 | optimization of general UPS parallel manipulators", | ||||
119 | "package_id": "5afd5248-8545-4030-b1fc-4676ad69a84f", | ||||
120 | "position": 0, | ||||
121 | "resource_type": null, | ||||
122 | "size": null, | ||||
123 | "state": "active", | ||||
124 | "url": "https://doi.org/10.3390/math9050543", | ||||
125 | "url_type": null | ||||
126 | } | ||||
127 | ], | ||||
84 | "state": "active", | 128 | "state": "active", | ||
85 | "tags": [ | 129 | "tags": [ | ||
86 | { | 130 | { | ||
87 | "display_name": "algorithm", | 131 | "display_name": "algorithm", | ||
88 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 132 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
89 | "name": "algorithm", | 133 | "name": "algorithm", | ||
90 | "state": "active", | 134 | "state": "active", | ||
91 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
92 | }, | 136 | }, | ||
93 | { | 137 | { | ||
94 | "display_name": "computer-science", | 138 | "display_name": "computer-science", | ||
95 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 139 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
96 | "name": "computer-science", | 140 | "name": "computer-science", | ||
97 | "state": "active", | 141 | "state": "active", | ||
98 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
99 | }, | 143 | }, | ||
100 | { | 144 | { | ||
101 | "display_name": "decomposition", | 145 | "display_name": "decomposition", | ||
102 | "id": "dc0e2b55-5304-4a76-b334-c02c205f1c63", | 146 | "id": "dc0e2b55-5304-4a76-b334-c02c205f1c63", | ||
103 | "name": "decomposition", | 147 | "name": "decomposition", | ||
104 | "state": "active", | 148 | "state": "active", | ||
105 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
106 | }, | 150 | }, | ||
107 | { | 151 | { | ||
108 | "display_name": "derivative-free-optimization", | 152 | "display_name": "derivative-free-optimization", | ||
109 | "id": "d95c8f01-048f-4a46-900b-eceaf60976a4", | 153 | "id": "d95c8f01-048f-4a46-900b-eceaf60976a4", | ||
110 | "name": "derivative-free-optimization", | 154 | "name": "derivative-free-optimization", | ||
111 | "state": "active", | 155 | "state": "active", | ||
112 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
113 | }, | 157 | }, | ||
114 | { | 158 | { | ||
115 | "display_name": "evolutionary-algorithm", | 159 | "display_name": "evolutionary-algorithm", | ||
116 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | 160 | "id": "22db3110-8a27-435b-8d9a-c910fe7201ca", | ||
117 | "name": "evolutionary-algorithm", | 161 | "name": "evolutionary-algorithm", | ||
118 | "state": "active", | 162 | "state": "active", | ||
119 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
120 | }, | 164 | }, | ||
121 | { | 165 | { | ||
122 | "display_name": "genetic-algorithm", | 166 | "display_name": "genetic-algorithm", | ||
123 | "id": "6a61702d-b718-409f-afdd-cdcf6ff05799", | 167 | "id": "6a61702d-b718-409f-afdd-cdcf6ff05799", | ||
124 | "name": "genetic-algorithm", | 168 | "name": "genetic-algorithm", | ||
125 | "state": "active", | 169 | "state": "active", | ||
126 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
127 | }, | 171 | }, | ||
128 | { | 172 | { | ||
129 | "display_name": "mathematical-optimization", | 173 | "display_name": "mathematical-optimization", | ||
130 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 174 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
131 | "name": "mathematical-optimization", | 175 | "name": "mathematical-optimization", | ||
132 | "state": "active", | 176 | "state": "active", | ||
133 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
134 | }, | 178 | }, | ||
135 | { | 179 | { | ||
136 | "display_name": "meta-optimization", | 180 | "display_name": "meta-optimization", | ||
137 | "id": "87f29f48-4841-403e-8c53-4f53699b83bf", | 181 | "id": "87f29f48-4841-403e-8c53-4f53699b83bf", | ||
138 | "name": "meta-optimization", | 182 | "name": "meta-optimization", | ||
139 | "state": "active", | 183 | "state": "active", | ||
140 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
141 | }, | 185 | }, | ||
142 | { | 186 | { | ||
143 | "display_name": "multi-objective-optimization", | 187 | "display_name": "multi-objective-optimization", | ||
144 | "id": "028254bd-4fdf-4157-a6c4-850397abd03d", | 188 | "id": "028254bd-4fdf-4157-a6c4-850397abd03d", | ||
145 | "name": "multi-objective-optimization", | 189 | "name": "multi-objective-optimization", | ||
146 | "state": "active", | 190 | "state": "active", | ||
147 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
148 | }, | 192 | }, | ||
149 | { | 193 | { | ||
150 | "display_name": "optimization-problem", | 194 | "display_name": "optimization-problem", | ||
151 | "id": "98d1c97f-9280-4bc4-babd-2b1010d9e73f", | 195 | "id": "98d1c97f-9280-4bc4-babd-2b1010d9e73f", | ||
152 | "name": "optimization-problem", | 196 | "name": "optimization-problem", | ||
153 | "state": "active", | 197 | "state": "active", | ||
154 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
155 | }, | 199 | }, | ||
156 | { | 200 | { | ||
157 | "display_name": "particle-swarm-optimization", | 201 | "display_name": "particle-swarm-optimization", | ||
158 | "id": "e10be4b1-1c48-463e-91df-95926219119c", | 202 | "id": "e10be4b1-1c48-463e-91df-95926219119c", | ||
159 | "name": "particle-swarm-optimization", | 203 | "name": "particle-swarm-optimization", | ||
160 | "state": "active", | 204 | "state": "active", | ||
161 | "vocabulary_id": null | 205 | "vocabulary_id": null | ||
162 | }, | 206 | }, | ||
163 | { | 207 | { | ||
164 | "display_name": "sorting", | 208 | "display_name": "sorting", | ||
165 | "id": "eb10811b-1fd0-49fc-9dc8-76235283f859", | 209 | "id": "eb10811b-1fd0-49fc-9dc8-76235283f859", | ||
166 | "name": "sorting", | 210 | "name": "sorting", | ||
167 | "state": "active", | 211 | "state": "active", | ||
168 | "vocabulary_id": null | 212 | "vocabulary_id": null | ||
169 | } | 213 | } | ||
170 | ], | 214 | ], | ||
171 | "title": "A two-stage mono-and multi-objective method for the | 215 | "title": "A two-stage mono-and multi-objective method for the | ||
172 | optimization of general UPS parallel manipulators", | 216 | optimization of general UPS parallel manipulators", | ||
173 | "type": "dataset", | 217 | "type": "dataset", | ||
174 | "url": "https://doi.org/10.3390/math9050543", | 218 | "url": "https://doi.org/10.3390/math9050543", | ||
175 | "version": null | 219 | "version": null | ||
176 | } | 220 | } |