Cambios
En el instante 10 de octubre de 2025, 7:19:52 UTC,
-
Añadido recurso Self‐adaptive online virtual network migration in network virtualization environments a Self‐adaptive online virtual network migration in network virtualization environments
f | 1 | { | f | 1 | { |
2 | "author": "M Zangiabady, A Garcia\u2010Robledo, JL Gorricho, J | 2 | "author": "M Zangiabady, A Garcia\u2010Robledo, JL Gorricho, J | ||
3 | Serrat\u2010Fernandez, ...", | 3 | Serrat\u2010Fernandez, ...", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "Publicaci\u00f3n", | 8 | "key": "Publicaci\u00f3n", | ||
9 | "value": "Revista" | 9 | "value": "Revista" | ||
10 | }, | 10 | }, | ||
11 | { | 11 | { | ||
12 | "key": "Tipo", | 12 | "key": "Tipo", | ||
13 | "value": "Publicaci\u00f3n" | 13 | "value": "Publicaci\u00f3n" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "groups": [ | 16 | "groups": [ | ||
17 | { | 17 | { | ||
18 | "description": "Este grupo integra las publicaciones | 18 | "description": "Este grupo integra las publicaciones | ||
19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
21 | presentados en congresos nacionales e internacionales, manuscritos en | 21 | presentados en congresos nacionales e internacionales, manuscritos en | ||
22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
27 | "display_name": "Publicaciones", | 27 | "display_name": "Publicaciones", | ||
28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
29 | "image_display_url": "", | 29 | "image_display_url": "", | ||
30 | "name": "publicaciones", | 30 | "name": "publicaciones", | ||
31 | "title": "Publicaciones" | 31 | "title": "Publicaciones" | ||
32 | } | 32 | } | ||
33 | ], | 33 | ], | ||
34 | "id": "77ad3523-9233-4ae1-a38f-7da4beeac90f", | 34 | "id": "77ad3523-9233-4ae1-a38f-7da4beeac90f", | ||
35 | "isopen": false, | 35 | "isopen": false, | ||
36 | "license_id": null, | 36 | "license_id": null, | ||
37 | "license_title": null, | 37 | "license_title": null, | ||
38 | "maintainer": null, | 38 | "maintainer": null, | ||
39 | "maintainer_email": null, | 39 | "maintainer_email": null, | ||
40 | "metadata_created": "2025-10-10T07:19:51.739629", | 40 | "metadata_created": "2025-10-10T07:19:51.739629", | ||
n | 41 | "metadata_modified": "2025-10-10T07:19:51.739639", | n | 41 | "metadata_modified": "2025-10-10T07:19:52.251944", |
42 | "name": | 42 | "name": | ||
43 | etwork-migration-in-network-virtualization-environments-b11c5d2da11d", | 43 | etwork-migration-in-network-virtualization-environments-b11c5d2da11d", | ||
44 | "notes": "In Network Virtualization Environments, the capability of | 44 | "notes": "In Network Virtualization Environments, the capability of | ||
45 | operators to allocate resources in the Substrate Network (SN) to | 45 | operators to allocate resources in the Substrate Network (SN) to | ||
46 | support Virtual Networks (VNs) in an optimal manner is known as | 46 | support Virtual Networks (VNs) in an optimal manner is known as | ||
47 | Virtual Network Embedding (VNE). In the same context, online VN | 47 | Virtual Network Embedding (VNE). In the same context, online VN | ||
48 | migration is the process meant to reallocate components of a VN, or | 48 | migration is the process meant to reallocate components of a VN, or | ||
49 | even an entire VN among elements of the SN in real time and seamlessly | 49 | even an entire VN among elements of the SN in real time and seamlessly | ||
50 | to end\u2010users. Online VNE without VN migration may lead to either | 50 | to end\u2010users. Online VNE without VN migration may lead to either | ||
51 | over\u2010 or under\u2010utilization of the SN resources. However, VN | 51 | over\u2010 or under\u2010utilization of the SN resources. However, VN | ||
52 | migration is challenging due to its computational cost and the service | 52 | migration is challenging due to its computational cost and the service | ||
53 | disruption inherent to VN components reallocation. Online VN migration | 53 | disruption inherent to VN components reallocation. Online VN migration | ||
54 | can reduce migration costs insofar it is triggered proactively, not | 54 | can reduce migration costs insofar it is triggered proactively, not | ||
55 | reactively, at critical times, avoiding the negative effects of both | 55 | reactively, at critical times, avoiding the negative effects of both | ||
56 | under\u2010 and over\u2010triggering. This paper presents a novel | 56 | under\u2010 and over\u2010triggering. This paper presents a novel | ||
57 | online cost\u2010efficient mechanism that self\u2010adaptively learns | 57 | online cost\u2010efficient mechanism that self\u2010adaptively learns | ||
58 | the exact moments when triggering VN migration is likely to be | 58 | the exact moments when triggering VN migration is likely to be | ||
59 | profitable in the long term. We propose a novel self\u2010adaptive | 59 | profitable in the long term. We propose a novel self\u2010adaptive | ||
60 | mechanism based on Reinforcement Learning that determines the right | 60 | mechanism based on Reinforcement Learning that determines the right | ||
61 | trigger online VN migration times, leading to the minimization of | 61 | trigger online VN migration times, leading to the minimization of | ||
62 | migration costs while simultaneously considering the online VNE | 62 | migration costs while simultaneously considering the online VNE | ||
63 | acceptance ratio.", | 63 | acceptance ratio.", | ||
n | 64 | "num_resources": 0, | n | 64 | "num_resources": 1, |
65 | "num_tags": 12, | 65 | "num_tags": 12, | ||
66 | "organization": { | 66 | "organization": { | ||
67 | "approval_status": "approved", | 67 | "approval_status": "approved", | ||
68 | "created": "2022-05-19T00:10:30.480393", | 68 | "created": "2022-05-19T00:10:30.480393", | ||
69 | "description": "Observatorio Metropolitano CentroGeo", | 69 | "description": "Observatorio Metropolitano CentroGeo", | ||
70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
71 | "image_url": | 71 | "image_url": | ||
72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "observatorio-metropolitano-centrogeo", | 74 | "name": "observatorio-metropolitano-centrogeo", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "Observatorio Metropolitano CentroGeo", | 76 | "title": "Observatorio Metropolitano CentroGeo", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2025-10-10T07:19:52.291575", | ||||
88 | "datastore_active": false, | ||||
89 | "description": "In Network Virtualization Environments, the | ||||
90 | capability of operators to allocate resources in the Substrate Network | ||||
91 | (SN) to support Virtual Networks (VNs) in an optimal manner is known | ||||
92 | as Virtual Network Embedding (VNE). In the same context, online VN | ||||
93 | migration is the process meant to reallocate components of a VN, or | ||||
94 | even an entire VN among elements of the SN in real time and seamlessly | ||||
95 | to end\u2010users. Online VNE without VN migration may lead to either | ||||
96 | over\u2010 or under\u2010utilization of the SN resources. However, VN | ||||
97 | migration is challenging due to its computational cost and the service | ||||
98 | disruption inherent to VN components reallocation. Online VN migration | ||||
99 | can reduce migration costs insofar it is triggered proactively, not | ||||
100 | reactively, at critical times, avoiding the negative effects of both | ||||
101 | under\u2010 and over\u2010triggering. This paper presents a novel | ||||
102 | online cost\u2010efficient mechanism that self\u2010adaptively learns | ||||
103 | the exact moments when triggering VN migration is likely to be | ||||
104 | profitable in the long term. We propose a novel self\u2010adaptive | ||||
105 | mechanism based on Reinforcement Learning that determines the right | ||||
106 | trigger online VN migration times, leading to the minimization of | ||||
107 | migration costs while simultaneously considering the online VNE | ||||
108 | acceptance ratio.", | ||||
109 | "format": "HTML", | ||||
110 | "hash": "", | ||||
111 | "id": "f39c79c8-86e6-42dc-84c2-c0bbb52bea98", | ||||
112 | "last_modified": null, | ||||
113 | "metadata_modified": "2025-10-10T07:19:52.257863", | ||||
114 | "mimetype": null, | ||||
115 | "mimetype_inner": null, | ||||
116 | "name": "Self\u2010adaptive online virtual network migration in | ||||
117 | network virtualization environments", | ||||
118 | "package_id": "77ad3523-9233-4ae1-a38f-7da4beeac90f", | ||||
119 | "position": 0, | ||||
120 | "resource_type": null, | ||||
121 | "size": null, | ||||
122 | "state": "active", | ||||
123 | "url": "https://doi.org/10.1002/ett.3692", | ||||
124 | "url_type": null | ||||
125 | } | ||||
126 | ], | ||||
84 | "state": "active", | 127 | "state": "active", | ||
85 | "tags": [ | 128 | "tags": [ | ||
86 | { | 129 | { | ||
87 | "display_name": "computer-network", | 130 | "display_name": "computer-network", | ||
88 | "id": "7c9c7ce1-6a1a-47b9-8592-c2b8bf70a1f9", | 131 | "id": "7c9c7ce1-6a1a-47b9-8592-c2b8bf70a1f9", | ||
89 | "name": "computer-network", | 132 | "name": "computer-network", | ||
90 | "state": "active", | 133 | "state": "active", | ||
91 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
92 | }, | 135 | }, | ||
93 | { | 136 | { | ||
94 | "display_name": "computer-science", | 137 | "display_name": "computer-science", | ||
95 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 138 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
96 | "name": "computer-science", | 139 | "name": "computer-science", | ||
97 | "state": "active", | 140 | "state": "active", | ||
98 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
99 | }, | 142 | }, | ||
100 | { | 143 | { | ||
101 | "display_name": "context-archaeology", | 144 | "display_name": "context-archaeology", | ||
102 | "id": "a031c0ee-d17a-4f2b-a798-26d36b194438", | 145 | "id": "a031c0ee-d17a-4f2b-a798-26d36b194438", | ||
103 | "name": "context-archaeology", | 146 | "name": "context-archaeology", | ||
104 | "state": "active", | 147 | "state": "active", | ||
105 | "vocabulary_id": null | 148 | "vocabulary_id": null | ||
106 | }, | 149 | }, | ||
107 | { | 150 | { | ||
108 | "display_name": "distributed-computing", | 151 | "display_name": "distributed-computing", | ||
109 | "id": "e4749285-53bd-48e3-8b01-3ebb7b19d0ea", | 152 | "id": "e4749285-53bd-48e3-8b01-3ebb7b19d0ea", | ||
110 | "name": "distributed-computing", | 153 | "name": "distributed-computing", | ||
111 | "state": "active", | 154 | "state": "active", | ||
112 | "vocabulary_id": null | 155 | "vocabulary_id": null | ||
113 | }, | 156 | }, | ||
114 | { | 157 | { | ||
115 | "display_name": "embedding", | 158 | "display_name": "embedding", | ||
116 | "id": "a4c56644-74e3-4200-9da6-65a5828d0c1f", | 159 | "id": "a4c56644-74e3-4200-9da6-65a5828d0c1f", | ||
117 | "name": "embedding", | 160 | "name": "embedding", | ||
118 | "state": "active", | 161 | "state": "active", | ||
119 | "vocabulary_id": null | 162 | "vocabulary_id": null | ||
120 | }, | 163 | }, | ||
121 | { | 164 | { | ||
122 | "display_name": "live-migration", | 165 | "display_name": "live-migration", | ||
123 | "id": "ce7e689c-78bb-45dd-851c-d4aba6f8fd22", | 166 | "id": "ce7e689c-78bb-45dd-851c-d4aba6f8fd22", | ||
124 | "name": "live-migration", | 167 | "name": "live-migration", | ||
125 | "state": "active", | 168 | "state": "active", | ||
126 | "vocabulary_id": null | 169 | "vocabulary_id": null | ||
127 | }, | 170 | }, | ||
128 | { | 171 | { | ||
129 | "display_name": "mechanism-biology", | 172 | "display_name": "mechanism-biology", | ||
130 | "id": "e71dd8a0-988f-412a-97f7-18e472ef797f", | 173 | "id": "e71dd8a0-988f-412a-97f7-18e472ef797f", | ||
131 | "name": "mechanism-biology", | 174 | "name": "mechanism-biology", | ||
132 | "state": "active", | 175 | "state": "active", | ||
133 | "vocabulary_id": null | 176 | "vocabulary_id": null | ||
134 | }, | 177 | }, | ||
135 | { | 178 | { | ||
136 | "display_name": "minification", | 179 | "display_name": "minification", | ||
137 | "id": "01b18996-afe4-4106-9b08-49e1d7beb3e4", | 180 | "id": "01b18996-afe4-4106-9b08-49e1d7beb3e4", | ||
138 | "name": "minification", | 181 | "name": "minification", | ||
139 | "state": "active", | 182 | "state": "active", | ||
140 | "vocabulary_id": null | 183 | "vocabulary_id": null | ||
141 | }, | 184 | }, | ||
142 | { | 185 | { | ||
143 | "display_name": "network-virtualization", | 186 | "display_name": "network-virtualization", | ||
144 | "id": "aeeed504-93ee-44ec-bb5f-0cd4d7abecf4", | 187 | "id": "aeeed504-93ee-44ec-bb5f-0cd4d7abecf4", | ||
145 | "name": "network-virtualization", | 188 | "name": "network-virtualization", | ||
146 | "state": "active", | 189 | "state": "active", | ||
147 | "vocabulary_id": null | 190 | "vocabulary_id": null | ||
148 | }, | 191 | }, | ||
149 | { | 192 | { | ||
150 | "display_name": "process-computing", | 193 | "display_name": "process-computing", | ||
151 | "id": "d07d93c6-53f7-48a4-bded-e205ec0bc2c2", | 194 | "id": "d07d93c6-53f7-48a4-bded-e205ec0bc2c2", | ||
152 | "name": "process-computing", | 195 | "name": "process-computing", | ||
153 | "state": "active", | 196 | "state": "active", | ||
154 | "vocabulary_id": null | 197 | "vocabulary_id": null | ||
155 | }, | 198 | }, | ||
156 | { | 199 | { | ||
157 | "display_name": "virtual-network", | 200 | "display_name": "virtual-network", | ||
158 | "id": "073df14b-88f0-4042-94ef-52d4c218aad6", | 201 | "id": "073df14b-88f0-4042-94ef-52d4c218aad6", | ||
159 | "name": "virtual-network", | 202 | "name": "virtual-network", | ||
160 | "state": "active", | 203 | "state": "active", | ||
161 | "vocabulary_id": null | 204 | "vocabulary_id": null | ||
162 | }, | 205 | }, | ||
163 | { | 206 | { | ||
164 | "display_name": "virtualization", | 207 | "display_name": "virtualization", | ||
165 | "id": "defd0f3d-1f4b-416d-8341-5aa101e6e102", | 208 | "id": "defd0f3d-1f4b-416d-8341-5aa101e6e102", | ||
166 | "name": "virtualization", | 209 | "name": "virtualization", | ||
167 | "state": "active", | 210 | "state": "active", | ||
168 | "vocabulary_id": null | 211 | "vocabulary_id": null | ||
169 | } | 212 | } | ||
170 | ], | 213 | ], | ||
171 | "title": "Self\u2010adaptive online virtual network migration in | 214 | "title": "Self\u2010adaptive online virtual network migration in | ||
172 | network virtualization environments", | 215 | network virtualization environments", | ||
173 | "type": "dataset", | 216 | "type": "dataset", | ||
174 | "url": "https://doi.org/10.1002/ett.3692", | 217 | "url": "https://doi.org/10.1002/ett.3692", | ||
175 | "version": null | 218 | "version": null | ||
176 | } | 219 | } |