Cambios
En el instante 21 de octubre de 2025, 9:03:16 UTC,
-
Añadido recurso Spatio-temporal interpolation of rainfall data in western Mexico a Spatio-temporal interpolation of rainfall data in western Mexico
f | 1 | { | f | 1 | { |
2 | "author": "ZCM Vargas, SI Valdez, J Paredes-Tavares", | 2 | "author": "ZCM Vargas, SI Valdez, J Paredes-Tavares", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
8 | "value": "2021" | 8 | "value": "2021" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "DOI", | 11 | "key": "DOI", | ||
12 | "value": "https://doi.org/10.1109/enc53357.2021.9534803" | 12 | "value": "https://doi.org/10.1109/enc53357.2021.9534803" | ||
13 | }, | 13 | }, | ||
14 | { | 14 | { | ||
15 | "key": "Google Scholar URL", | 15 | "key": "Google Scholar URL", | ||
16 | "value": | 16 | "value": | ||
17 | gesize=100&sortby=pubdate&citation_for_view=ibjfgWwAAAAJ:IWHjjKOFINEC" | 17 | gesize=100&sortby=pubdate&citation_for_view=ibjfgWwAAAAJ:IWHjjKOFINEC" | ||
18 | }, | 18 | }, | ||
19 | { | 19 | { | ||
20 | "key": "Identificador hash", | 20 | "key": "Identificador hash", | ||
21 | "value": "f1f82b7987a7" | 21 | "value": "f1f82b7987a7" | ||
22 | }, | 22 | }, | ||
23 | { | 23 | { | ||
24 | "key": "Lugar de publicaci\u00f3n", | 24 | "key": "Lugar de publicaci\u00f3n", | ||
25 | "value": "2021 Mexican International Conference on Computer | 25 | "value": "2021 Mexican International Conference on Computer | ||
26 | Science (ENC), 1-8, 2021" | 26 | Science (ENC), 1-8, 2021" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "key": "Tipo", | 29 | "key": "Tipo", | ||
30 | "value": "Publicaci\u00f3n" | 30 | "value": "Publicaci\u00f3n" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "key": "Tipo de publicaci\u00f3n", | 33 | "key": "Tipo de publicaci\u00f3n", | ||
34 | "value": "Conferencia" | 34 | "value": "Conferencia" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "key": "URL directo", | 37 | "key": "URL directo", | ||
38 | "value": | 38 | "value": | ||
39 | "https://ieeexplore.ieee.org/abstract/document/9534803/" | 39 | "https://ieeexplore.ieee.org/abstract/document/9534803/" | ||
40 | } | 40 | } | ||
41 | ], | 41 | ], | ||
42 | "groups": [ | 42 | "groups": [ | ||
43 | { | 43 | { | ||
44 | "description": "", | 44 | "description": "", | ||
45 | "display_name": "Publicaciones", | 45 | "display_name": "Publicaciones", | ||
46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
47 | "image_display_url": "", | 47 | "image_display_url": "", | ||
48 | "name": "publicaciones", | 48 | "name": "publicaciones", | ||
49 | "title": "Publicaciones" | 49 | "title": "Publicaciones" | ||
50 | } | 50 | } | ||
51 | ], | 51 | ], | ||
52 | "id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | 52 | "id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | ||
53 | "isopen": false, | 53 | "isopen": false, | ||
54 | "license_id": null, | 54 | "license_id": null, | ||
55 | "license_title": null, | 55 | "license_title": null, | ||
56 | "maintainer": null, | 56 | "maintainer": null, | ||
57 | "maintainer_email": null, | 57 | "maintainer_email": null, | ||
58 | "metadata_created": "2025-10-21T09:01:24.764036", | 58 | "metadata_created": "2025-10-21T09:01:24.764036", | ||
n | 59 | "metadata_modified": "2025-10-21T09:03:15.893275", | n | 59 | "metadata_modified": "2025-10-21T09:03:16.425508", |
60 | "name": "f1f82b7987a7", | 60 | "name": "f1f82b7987a7", | ||
61 | "notes": "One of the most common problems related to meteorological | 61 | "notes": "One of the most common problems related to meteorological | ||
62 | information is the missing registers. This lack of data generates | 62 | information is the missing registers. This lack of data generates | ||
63 | uncertainties in the analysis of climate, hydrology, and natural | 63 | uncertainties in the analysis of climate, hydrology, and natural | ||
64 | disasters. In Mexico, very often, this problem is present in all the | 64 | disasters. In Mexico, very often, this problem is present in all the | ||
65 | meteorological stations of the country. In this study, we apply two | 65 | meteorological stations of the country. In this study, we apply two | ||
66 | well-established spatial interpolation methods that have report | 66 | well-established spatial interpolation methods that have report | ||
67 | competitive performance in the specialized literature: the Inverse | 67 | competitive performance in the specialized literature: the Inverse | ||
68 | Distance Weighting (IDW) and Modified Inverse Distance Weighting | 68 | Distance Weighting (IDW) and Modified Inverse Distance Weighting | ||
69 | (MIDW); and they are compared with a proposal of spatio-temporal | 69 | (MIDW); and they are compared with a proposal of spatio-temporal | ||
70 | regression using an artificial neural network of the kind of | 70 | regression using an artificial neural network of the kind of | ||
71 | multilayer perceptron (MLP). The results show that using a combination | 71 | multilayer perceptron (MLP). The results show that using a combination | ||
72 | of spatial and temporal data with a low number of predictors is | 72 | of spatial and temporal data with a low number of predictors is | ||
73 | competitive with the comparing methods using a high number of | 73 | competitive with the comparing methods using a high number of | ||
74 | predictors. We compare the methods through statistical measures of the | 74 | predictors. We compare the methods through statistical measures of the | ||
75 | error for 31 meteorological stations of the Jalisco state in the | 75 | error for 31 meteorological stations of the Jalisco state in the | ||
76 | period of 2002-2006.", | 76 | period of 2002-2006.", | ||
n | 77 | "num_resources": 1, | n | 77 | "num_resources": 2, |
78 | "num_tags": 17, | 78 | "num_tags": 17, | ||
79 | "organization": { | 79 | "organization": { | ||
80 | "approval_status": "approved", | 80 | "approval_status": "approved", | ||
81 | "created": "2022-05-19T00:10:30.480393", | 81 | "created": "2022-05-19T00:10:30.480393", | ||
82 | "description": "Observatorio Metropolitano CentroGeo", | 82 | "description": "Observatorio Metropolitano CentroGeo", | ||
83 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 83 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
84 | "image_url": | 84 | "image_url": | ||
85 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 85 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
86 | "is_organization": true, | 86 | "is_organization": true, | ||
87 | "name": "observatorio-metropolitano-centrogeo", | 87 | "name": "observatorio-metropolitano-centrogeo", | ||
88 | "state": "active", | 88 | "state": "active", | ||
89 | "title": "Observatorio Metropolitano CentroGeo", | 89 | "title": "Observatorio Metropolitano CentroGeo", | ||
90 | "type": "organization" | 90 | "type": "organization" | ||
91 | }, | 91 | }, | ||
92 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 92 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
93 | "private": false, | 93 | "private": false, | ||
94 | "relationships_as_object": [], | 94 | "relationships_as_object": [], | ||
95 | "relationships_as_subject": [], | 95 | "relationships_as_subject": [], | ||
96 | "resources": [ | 96 | "resources": [ | ||
97 | { | 97 | { | ||
98 | "cache_last_updated": null, | 98 | "cache_last_updated": null, | ||
99 | "cache_url": null, | 99 | "cache_url": null, | ||
100 | "created": "2025-10-21T09:01:25.283761", | 100 | "created": "2025-10-21T09:01:25.283761", | ||
101 | "datastore_active": false, | 101 | "datastore_active": false, | ||
102 | "description": "One of the most common problems related to | 102 | "description": "One of the most common problems related to | ||
103 | meteorological information is the missing registers. This lack of data | 103 | meteorological information is the missing registers. This lack of data | ||
104 | generates uncertainties in the analysis of climate, hydrology, and | 104 | generates uncertainties in the analysis of climate, hydrology, and | ||
105 | natural disasters. In Mexico, very often, this problem is present in | 105 | natural disasters. In Mexico, very often, this problem is present in | ||
106 | all the meteorological stations of the country. In this study, we | 106 | all the meteorological stations of the country. In this study, we | ||
107 | apply two well-established spatial interpolation methods that have | 107 | apply two well-established spatial interpolation methods that have | ||
108 | report competitive performance in the specialized literature: the | 108 | report competitive performance in the specialized literature: the | ||
109 | Inverse Distance Weighting (IDW) and Modified Inverse Distance | 109 | Inverse Distance Weighting (IDW) and Modified Inverse Distance | ||
110 | Weighting (MIDW); and they are compared with a proposal of | 110 | Weighting (MIDW); and they are compared with a proposal of | ||
111 | spatio-temporal regression using an artificial neural network of the | 111 | spatio-temporal regression using an artificial neural network of the | ||
112 | kind of multilayer perceptron (MLP). The results show that using a | 112 | kind of multilayer perceptron (MLP). The results show that using a | ||
113 | combination of spatial and temporal data with a low number of | 113 | combination of spatial and temporal data with a low number of | ||
114 | predictors is competitive with the comparing methods using a high | 114 | predictors is competitive with the comparing methods using a high | ||
115 | number of predictors. We compare the methods through statistical | 115 | number of predictors. We compare the methods through statistical | ||
116 | measures of the error for 31 meteorological stations of the Jalisco | 116 | measures of the error for 31 meteorological stations of the Jalisco | ||
117 | state in the period of 2002-2006.", | 117 | state in the period of 2002-2006.", | ||
118 | "format": "HTML", | 118 | "format": "HTML", | ||
119 | "hash": "", | 119 | "hash": "", | ||
120 | "id": "a99bad5b-56ed-44ff-9ee3-6572a3785e4f", | 120 | "id": "a99bad5b-56ed-44ff-9ee3-6572a3785e4f", | ||
121 | "last_modified": null, | 121 | "last_modified": null, | ||
122 | "metadata_modified": "2025-10-21T09:03:15.897106", | 122 | "metadata_modified": "2025-10-21T09:03:15.897106", | ||
123 | "mimetype": null, | 123 | "mimetype": null, | ||
124 | "mimetype_inner": null, | 124 | "mimetype_inner": null, | ||
125 | "name": "Spatio-temporal interpolation of rainfall data in | 125 | "name": "Spatio-temporal interpolation of rainfall data in | ||
126 | western Mexico", | 126 | western Mexico", | ||
127 | "package_id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | 127 | "package_id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | ||
128 | "position": 0, | 128 | "position": 0, | ||
129 | "resource_type": null, | 129 | "resource_type": null, | ||
130 | "size": null, | 130 | "size": null, | ||
131 | "state": "active", | 131 | "state": "active", | ||
132 | "url": | 132 | "url": | ||
133 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC", | 133 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC", | ||
134 | "url_type": null | 134 | "url_type": null | ||
t | t | 135 | }, | ||
136 | { | ||||
137 | "cache_last_updated": null, | ||||
138 | "cache_url": null, | ||||
139 | "created": "2025-10-21T09:03:16.475722", | ||||
140 | "datastore_active": false, | ||||
141 | "description": "One of the most common problems related to | ||||
142 | meteorological information is the missing registers. This lack of data | ||||
143 | generates uncertainties in the analysis of climate, hydrology, and | ||||
144 | natural disasters. In Mexico, very often, this problem is present in | ||||
145 | all the meteorological stations of the country. In this study, we | ||||
146 | apply two well-established spatial interpolation methods that have | ||||
147 | report competitive performance in the specialized literature: the | ||||
148 | Inverse Distance Weighting (IDW) and Modified Inverse Distance | ||||
149 | Weighting (MIDW); and they are compared with a proposal of | ||||
150 | spatio-temporal regression using an artificial neural network of the | ||||
151 | kind of multilayer perceptron (MLP). The results show that using a | ||||
152 | combination of spatial and temporal data with a low number of | ||||
153 | predictors is competitive with the comparing methods using a high | ||||
154 | number of predictors. We compare the methods through statistical | ||||
155 | measures of the error for 31 meteorological stations of the Jalisco | ||||
156 | state in the period of 2002-2006.", | ||||
157 | "format": "HTML", | ||||
158 | "hash": "", | ||||
159 | "id": "ef23dec8-b76c-445a-961a-a0e5af545ef2", | ||||
160 | "last_modified": null, | ||||
161 | "metadata_modified": "2025-10-21T09:03:16.430623", | ||||
162 | "mimetype": null, | ||||
163 | "mimetype_inner": null, | ||||
164 | "name": "Spatio-temporal interpolation of rainfall data in | ||||
165 | western Mexico", | ||||
166 | "package_id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | ||||
167 | "position": 1, | ||||
168 | "resource_type": null, | ||||
169 | "size": null, | ||||
170 | "state": "active", | ||||
171 | "url": | ||||
172 | esize=100&sortby=pubdate&citation_for_view=ibjfgWwAAAAJ:IWHjjKOFINEC", | ||||
173 | "url_type": null | ||||
135 | } | 174 | } | ||
136 | ], | 175 | ], | ||
137 | "state": "active", | 176 | "state": "active", | ||
138 | "tags": [ | 177 | "tags": [ | ||
139 | { | 178 | { | ||
140 | "display_name": "2021", | 179 | "display_name": "2021", | ||
141 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | 180 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | ||
142 | "name": "2021", | 181 | "name": "2021", | ||
143 | "state": "active", | 182 | "state": "active", | ||
144 | "vocabulary_id": null | 183 | "vocabulary_id": null | ||
145 | }, | 184 | }, | ||
146 | { | 185 | { | ||
147 | "display_name": "artificial-neural-network", | 186 | "display_name": "artificial-neural-network", | ||
148 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | 187 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | ||
149 | "name": "artificial-neural-network", | 188 | "name": "artificial-neural-network", | ||
150 | "state": "active", | 189 | "state": "active", | ||
151 | "vocabulary_id": null | 190 | "vocabulary_id": null | ||
152 | }, | 191 | }, | ||
153 | { | 192 | { | ||
154 | "display_name": "computer-science", | 193 | "display_name": "computer-science", | ||
155 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 194 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
156 | "name": "computer-science", | 195 | "name": "computer-science", | ||
157 | "state": "active", | 196 | "state": "active", | ||
158 | "vocabulary_id": null | 197 | "vocabulary_id": null | ||
159 | }, | 198 | }, | ||
160 | { | 199 | { | ||
161 | "display_name": "data-mining", | 200 | "display_name": "data-mining", | ||
162 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | 201 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | ||
163 | "name": "data-mining", | 202 | "name": "data-mining", | ||
164 | "state": "active", | 203 | "state": "active", | ||
165 | "vocabulary_id": null | 204 | "vocabulary_id": null | ||
166 | }, | 205 | }, | ||
167 | { | 206 | { | ||
168 | "display_name": "geography", | 207 | "display_name": "geography", | ||
169 | "id": "26d92c26-2661-4858-bbad-409a405f763f", | 208 | "id": "26d92c26-2661-4858-bbad-409a405f763f", | ||
170 | "name": "geography", | 209 | "name": "geography", | ||
171 | "state": "active", | 210 | "state": "active", | ||
172 | "vocabulary_id": null | 211 | "vocabulary_id": null | ||
173 | }, | 212 | }, | ||
174 | { | 213 | { | ||
175 | "display_name": "interpolation-computer-graphics", | 214 | "display_name": "interpolation-computer-graphics", | ||
176 | "id": "b6e48f98-d6d0-4803-9ec9-f43e775b3e3a", | 215 | "id": "b6e48f98-d6d0-4803-9ec9-f43e775b3e3a", | ||
177 | "name": "interpolation-computer-graphics", | 216 | "name": "interpolation-computer-graphics", | ||
178 | "state": "active", | 217 | "state": "active", | ||
179 | "vocabulary_id": null | 218 | "vocabulary_id": null | ||
180 | }, | 219 | }, | ||
181 | { | 220 | { | ||
182 | "display_name": "inverse-distance-weighting", | 221 | "display_name": "inverse-distance-weighting", | ||
183 | "id": "7406f1bc-3c8a-4b81-a582-d8c8ab0fe465", | 222 | "id": "7406f1bc-3c8a-4b81-a582-d8c8ab0fe465", | ||
184 | "name": "inverse-distance-weighting", | 223 | "name": "inverse-distance-weighting", | ||
185 | "state": "active", | 224 | "state": "active", | ||
186 | "vocabulary_id": null | 225 | "vocabulary_id": null | ||
187 | }, | 226 | }, | ||
188 | { | 227 | { | ||
189 | "display_name": "jparedes", | 228 | "display_name": "jparedes", | ||
190 | "id": "45de6aed-42af-4ad7-8cc0-166ea484921e", | 229 | "id": "45de6aed-42af-4ad7-8cc0-166ea484921e", | ||
191 | "name": "jparedes", | 230 | "name": "jparedes", | ||
192 | "state": "active", | 231 | "state": "active", | ||
193 | "vocabulary_id": null | 232 | "vocabulary_id": null | ||
194 | }, | 233 | }, | ||
195 | { | 234 | { | ||
196 | "display_name": "meteorology", | 235 | "display_name": "meteorology", | ||
197 | "id": "2ca9823c-d03b-4c5d-98d8-7c839897cd25", | 236 | "id": "2ca9823c-d03b-4c5d-98d8-7c839897cd25", | ||
198 | "name": "meteorology", | 237 | "name": "meteorology", | ||
199 | "state": "active", | 238 | "state": "active", | ||
200 | "vocabulary_id": null | 239 | "vocabulary_id": null | ||
201 | }, | 240 | }, | ||
202 | { | 241 | { | ||
203 | "display_name": "missing-data", | 242 | "display_name": "missing-data", | ||
204 | "id": "10ad299c-8793-49fb-9e11-deca21618978", | 243 | "id": "10ad299c-8793-49fb-9e11-deca21618978", | ||
205 | "name": "missing-data", | 244 | "name": "missing-data", | ||
206 | "state": "active", | 245 | "state": "active", | ||
207 | "vocabulary_id": null | 246 | "vocabulary_id": null | ||
208 | }, | 247 | }, | ||
209 | { | 248 | { | ||
210 | "display_name": "multilayer-perceptron", | 249 | "display_name": "multilayer-perceptron", | ||
211 | "id": "60f49ef1-5d88-4eb6-9100-b57565b36ac7", | 250 | "id": "60f49ef1-5d88-4eb6-9100-b57565b36ac7", | ||
212 | "name": "multilayer-perceptron", | 251 | "name": "multilayer-perceptron", | ||
213 | "state": "active", | 252 | "state": "active", | ||
214 | "vocabulary_id": null | 253 | "vocabulary_id": null | ||
215 | }, | 254 | }, | ||
216 | { | 255 | { | ||
217 | "display_name": "multivariate-interpolation", | 256 | "display_name": "multivariate-interpolation", | ||
218 | "id": "dabe0c40-2f4b-4a3b-be68-205ae0c59ab7", | 257 | "id": "dabe0c40-2f4b-4a3b-be68-205ae0c59ab7", | ||
219 | "name": "multivariate-interpolation", | 258 | "name": "multivariate-interpolation", | ||
220 | "state": "active", | 259 | "state": "active", | ||
221 | "vocabulary_id": null | 260 | "vocabulary_id": null | ||
222 | }, | 261 | }, | ||
223 | { | 262 | { | ||
224 | "display_name": "perceptron", | 263 | "display_name": "perceptron", | ||
225 | "id": "db4be28c-c2bf-4a93-b3f4-9b6e51ae471d", | 264 | "id": "db4be28c-c2bf-4a93-b3f4-9b6e51ae471d", | ||
226 | "name": "perceptron", | 265 | "name": "perceptron", | ||
227 | "state": "active", | 266 | "state": "active", | ||
228 | "vocabulary_id": null | 267 | "vocabulary_id": null | ||
229 | }, | 268 | }, | ||
230 | { | 269 | { | ||
231 | "display_name": "regression", | 270 | "display_name": "regression", | ||
232 | "id": "0a62c1a6-d0bf-42d4-a43b-9edab20627e6", | 271 | "id": "0a62c1a6-d0bf-42d4-a43b-9edab20627e6", | ||
233 | "name": "regression", | 272 | "name": "regression", | ||
234 | "state": "active", | 273 | "state": "active", | ||
235 | "vocabulary_id": null | 274 | "vocabulary_id": null | ||
236 | }, | 275 | }, | ||
237 | { | 276 | { | ||
238 | "display_name": "spatial-analysis", | 277 | "display_name": "spatial-analysis", | ||
239 | "id": "8b17cb4b-47dc-45d1-96dd-1e677bb43458", | 278 | "id": "8b17cb4b-47dc-45d1-96dd-1e677bb43458", | ||
240 | "name": "spatial-analysis", | 279 | "name": "spatial-analysis", | ||
241 | "state": "active", | 280 | "state": "active", | ||
242 | "vocabulary_id": null | 281 | "vocabulary_id": null | ||
243 | }, | 282 | }, | ||
244 | { | 283 | { | ||
245 | "display_name": "svaldez", | 284 | "display_name": "svaldez", | ||
246 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 285 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
247 | "name": "svaldez", | 286 | "name": "svaldez", | ||
248 | "state": "active", | 287 | "state": "active", | ||
249 | "vocabulary_id": null | 288 | "vocabulary_id": null | ||
250 | }, | 289 | }, | ||
251 | { | 290 | { | ||
252 | "display_name": "weighting", | 291 | "display_name": "weighting", | ||
253 | "id": "1215aeaf-94a9-41aa-94f9-1c445cd394f1", | 292 | "id": "1215aeaf-94a9-41aa-94f9-1c445cd394f1", | ||
254 | "name": "weighting", | 293 | "name": "weighting", | ||
255 | "state": "active", | 294 | "state": "active", | ||
256 | "vocabulary_id": null | 295 | "vocabulary_id": null | ||
257 | } | 296 | } | ||
258 | ], | 297 | ], | ||
259 | "title": "Spatio-temporal interpolation of rainfall data in western | 298 | "title": "Spatio-temporal interpolation of rainfall data in western | ||
260 | Mexico", | 299 | Mexico", | ||
261 | "type": "dataset", | 300 | "type": "dataset", | ||
262 | "url": | 301 | "url": | ||
263 | esize=100&sortby=pubdate&citation_for_view=ibjfgWwAAAAJ:IWHjjKOFINEC", | 302 | esize=100&sortby=pubdate&citation_for_view=ibjfgWwAAAAJ:IWHjjKOFINEC", | ||
264 | "version": null | 303 | "version": null | ||
265 | } | 304 | } |