Cambios
En el instante 11 de octubre de 2025, 1:24:01 UTC,
-
Añadido recurso Blood Vessel Analysis on High Resolution Fundus Retinal Images a Blood Vessel Analysis on High Resolution Fundus Retinal Images
f | 1 | { | f | 1 | { |
2 | "author": "GS Parra-Dominguez, RE Sanchez-Yanez, SI Valdez", | 2 | "author": "GS Parra-Dominguez, RE Sanchez-Yanez, SI Valdez", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Cap\u00edtulo" | 8 | "value": "Cap\u00edtulo" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "6784312a-bb56-4eb2-97dd-07ec349d4b73", | 33 | "id": "6784312a-bb56-4eb2-97dd-07ec349d4b73", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-11T01:24:01.192842", | 39 | "metadata_created": "2025-10-11T01:24:01.192842", | ||
n | 40 | "metadata_modified": "2025-10-11T01:24:01.192851", | n | 40 | "metadata_modified": "2025-10-11T01:24:01.759726", |
41 | "name": | 41 | "name": | ||
42 | essel-analysis-on-high-resolution-fundus-retinal-images-e408aebdc336", | 42 | essel-analysis-on-high-resolution-fundus-retinal-images-e408aebdc336", | ||
43 | "notes": "Image analysis is a relevant tool to improve the | 43 | "notes": "Image analysis is a relevant tool to improve the | ||
44 | healthcare services. Fundus retinal image analysis allows the early | 44 | healthcare services. Fundus retinal image analysis allows the early | ||
45 | detection of ophthalmic diseases such as diabetes and glaucoma. Thus, | 45 | detection of ophthalmic diseases such as diabetes and glaucoma. Thus, | ||
46 | growing interest is observed on the development of segmentation | 46 | growing interest is observed on the development of segmentation | ||
47 | algorithms for blood vessels in retinal images. For this purpose, | 47 | algorithms for blood vessels in retinal images. For this purpose, | ||
48 | Kernel-based approaches with Gaussian matched filters have been | 48 | Kernel-based approaches with Gaussian matched filters have been | ||
49 | successfully used. Nowadays, improved image sensors and computers | 49 | successfully used. Nowadays, improved image sensors and computers | ||
50 | deliver high resolution images, and different parameter values are | 50 | deliver high resolution images, and different parameter values are | ||
51 | required for the efficient operation of such filters. In this work, an | 51 | required for the efficient operation of such filters. In this work, an | ||
52 | optimization system using genetic algorithms is designed to calculate | 52 | optimization system using genetic algorithms is designed to calculate | ||
53 | those values. To evaluate our methodology, a segmentation algorithm is | 53 | those values. To evaluate our methodology, a segmentation algorithm is | ||
54 | proposed and the outcomes are evaluated on the HRF image database. | 54 | proposed and the outcomes are evaluated on the HRF image database. | ||
55 | Performance measures are obtained and compared to those obtained using | 55 | Performance measures are obtained and compared to those obtained using | ||
56 | state of the art methods. This analysis represents a first step in the | 56 | state of the art methods. This analysis represents a first step in the | ||
57 | detection and classification of normal and abnormal eye conditions.", | 57 | detection and classification of normal and abnormal eye conditions.", | ||
n | 58 | "num_resources": 0, | n | 58 | "num_resources": 1, |
59 | "num_tags": 9, | 59 | "num_tags": 9, | ||
60 | "organization": { | 60 | "organization": { | ||
61 | "approval_status": "approved", | 61 | "approval_status": "approved", | ||
62 | "created": "2022-05-19T00:10:30.480393", | 62 | "created": "2022-05-19T00:10:30.480393", | ||
63 | "description": "Observatorio Metropolitano CentroGeo", | 63 | "description": "Observatorio Metropolitano CentroGeo", | ||
64 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 64 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
65 | "image_url": | 65 | "image_url": | ||
66 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 66 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
67 | "is_organization": true, | 67 | "is_organization": true, | ||
68 | "name": "observatorio-metropolitano-centrogeo", | 68 | "name": "observatorio-metropolitano-centrogeo", | ||
69 | "state": "active", | 69 | "state": "active", | ||
70 | "title": "Observatorio Metropolitano CentroGeo", | 70 | "title": "Observatorio Metropolitano CentroGeo", | ||
71 | "type": "organization" | 71 | "type": "organization" | ||
72 | }, | 72 | }, | ||
73 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 73 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
74 | "private": false, | 74 | "private": false, | ||
75 | "relationships_as_object": [], | 75 | "relationships_as_object": [], | ||
76 | "relationships_as_subject": [], | 76 | "relationships_as_subject": [], | ||
t | 77 | "resources": [], | t | 77 | "resources": [ |
78 | { | ||||
79 | "cache_last_updated": null, | ||||
80 | "cache_url": null, | ||||
81 | "created": "2025-10-11T01:24:01.786673", | ||||
82 | "datastore_active": false, | ||||
83 | "description": "Image analysis is a relevant tool to improve the | ||||
84 | healthcare services. Fundus retinal image analysis allows the early | ||||
85 | detection of ophthalmic diseases such as diabetes and glaucoma. Thus, | ||||
86 | growing interest is observed on the development of segmentation | ||||
87 | algorithms for blood vessels in retinal images. For this purpose, | ||||
88 | Kernel-based approaches with Gaussian matched filters have been | ||||
89 | successfully used. Nowadays, improved image sensors and computers | ||||
90 | deliver high resolution images, and different parameter values are | ||||
91 | required for the efficient operation of such filters. In this work, an | ||||
92 | optimization system using genetic algorithms is designed to calculate | ||||
93 | those values. To evaluate our methodology, a segmentation algorithm is | ||||
94 | proposed and the outcomes are evaluated on the HRF image database. | ||||
95 | Performance measures are obtained and compared to those obtained using | ||||
96 | state of the art methods. This analysis represents a first step in the | ||||
97 | detection and classification of normal and abnormal eye conditions.", | ||||
98 | "format": "HTML", | ||||
99 | "hash": "", | ||||
100 | "id": "9e6a6f55-fdb3-4b5e-83b1-f6c723b9f87b", | ||||
101 | "last_modified": null, | ||||
102 | "metadata_modified": "2025-10-11T01:24:01.763207", | ||||
103 | "mimetype": null, | ||||
104 | "mimetype_inner": null, | ||||
105 | "name": "Blood Vessel Analysis on High Resolution Fundus Retinal | ||||
106 | Images", | ||||
107 | "package_id": "6784312a-bb56-4eb2-97dd-07ec349d4b73", | ||||
108 | "position": 0, | ||||
109 | "resource_type": null, | ||||
110 | "size": null, | ||||
111 | "state": "active", | ||||
112 | "url": "https://doi.org/10.1007/978-3-030-21077-9_28", | ||||
113 | "url_type": null | ||||
114 | } | ||||
115 | ], | ||||
78 | "state": "active", | 116 | "state": "active", | ||
79 | "tags": [ | 117 | "tags": [ | ||
80 | { | 118 | { | ||
81 | "display_name": "artificial-intelligence", | 119 | "display_name": "artificial-intelligence", | ||
82 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 120 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
83 | "name": "artificial-intelligence", | 121 | "name": "artificial-intelligence", | ||
84 | "state": "active", | 122 | "state": "active", | ||
85 | "vocabulary_id": null | 123 | "vocabulary_id": null | ||
86 | }, | 124 | }, | ||
87 | { | 125 | { | ||
88 | "display_name": "computer-science", | 126 | "display_name": "computer-science", | ||
89 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 127 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
90 | "name": "computer-science", | 128 | "name": "computer-science", | ||
91 | "state": "active", | 129 | "state": "active", | ||
92 | "vocabulary_id": null | 130 | "vocabulary_id": null | ||
93 | }, | 131 | }, | ||
94 | { | 132 | { | ||
95 | "display_name": "computer-vision", | 133 | "display_name": "computer-vision", | ||
96 | "id": "5f89698c-dbdb-4dea-b051-8dea015c97c0", | 134 | "id": "5f89698c-dbdb-4dea-b051-8dea015c97c0", | ||
97 | "name": "computer-vision", | 135 | "name": "computer-vision", | ||
98 | "state": "active", | 136 | "state": "active", | ||
99 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
100 | }, | 138 | }, | ||
101 | { | 139 | { | ||
102 | "display_name": "fundus-uterus", | 140 | "display_name": "fundus-uterus", | ||
103 | "id": "20013a2a-ed97-4523-8ef6-b612ddefd5b7", | 141 | "id": "20013a2a-ed97-4523-8ef6-b612ddefd5b7", | ||
104 | "name": "fundus-uterus", | 142 | "name": "fundus-uterus", | ||
105 | "state": "active", | 143 | "state": "active", | ||
106 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
107 | }, | 145 | }, | ||
108 | { | 146 | { | ||
109 | "display_name": "gaussian", | 147 | "display_name": "gaussian", | ||
110 | "id": "7351f3eb-2aa7-42ab-be18-f4aa586e6885", | 148 | "id": "7351f3eb-2aa7-42ab-be18-f4aa586e6885", | ||
111 | "name": "gaussian", | 149 | "name": "gaussian", | ||
112 | "state": "active", | 150 | "state": "active", | ||
113 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
114 | }, | 152 | }, | ||
115 | { | 153 | { | ||
116 | "display_name": "image-segmentation", | 154 | "display_name": "image-segmentation", | ||
117 | "id": "b0be717d-bbaf-42ed-9a44-d6f9d685f3ff", | 155 | "id": "b0be717d-bbaf-42ed-9a44-d6f9d685f3ff", | ||
118 | "name": "image-segmentation", | 156 | "name": "image-segmentation", | ||
119 | "state": "active", | 157 | "state": "active", | ||
120 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
121 | }, | 159 | }, | ||
122 | { | 160 | { | ||
123 | "display_name": "kernel-algebra", | 161 | "display_name": "kernel-algebra", | ||
124 | "id": "eb0621d8-e590-4b47-8a44-f42301ec78a9", | 162 | "id": "eb0621d8-e590-4b47-8a44-f42301ec78a9", | ||
125 | "name": "kernel-algebra", | 163 | "name": "kernel-algebra", | ||
126 | "state": "active", | 164 | "state": "active", | ||
127 | "vocabulary_id": null | 165 | "vocabulary_id": null | ||
128 | }, | 166 | }, | ||
129 | { | 167 | { | ||
130 | "display_name": "pattern-recognition-psychology", | 168 | "display_name": "pattern-recognition-psychology", | ||
131 | "id": "e3b5294b-7ed6-4637-93c9-eae7d3b94405", | 169 | "id": "e3b5294b-7ed6-4637-93c9-eae7d3b94405", | ||
132 | "name": "pattern-recognition-psychology", | 170 | "name": "pattern-recognition-psychology", | ||
133 | "state": "active", | 171 | "state": "active", | ||
134 | "vocabulary_id": null | 172 | "vocabulary_id": null | ||
135 | }, | 173 | }, | ||
136 | { | 174 | { | ||
137 | "display_name": "segmentation", | 175 | "display_name": "segmentation", | ||
138 | "id": "87db647c-a202-4572-b148-dfa0cf933465", | 176 | "id": "87db647c-a202-4572-b148-dfa0cf933465", | ||
139 | "name": "segmentation", | 177 | "name": "segmentation", | ||
140 | "state": "active", | 178 | "state": "active", | ||
141 | "vocabulary_id": null | 179 | "vocabulary_id": null | ||
142 | } | 180 | } | ||
143 | ], | 181 | ], | ||
144 | "title": "Blood Vessel Analysis on High Resolution Fundus Retinal | 182 | "title": "Blood Vessel Analysis on High Resolution Fundus Retinal | ||
145 | Images", | 183 | Images", | ||
146 | "type": "dataset", | 184 | "type": "dataset", | ||
147 | "url": "https://doi.org/10.1007/978-3-030-21077-9_28", | 185 | "url": "https://doi.org/10.1007/978-3-030-21077-9_28", | ||
148 | "version": null | 186 | "version": null | ||
149 | } | 187 | } |