Cambios
En el instante 10 de octubre de 2025, 7:19:39 UTC,
-
Añadido recurso Decoding Online Hate in the United States: A BERT-CNN Analysis of 36 Million Tweets from 2020 to 2022 a Decoding Online Hate in the United States: A BERT-CNN Analysis of 36 Million Tweets from 2020 to 2022
f | 1 | { | f | 1 | { |
2 | "author": "SS Pandey, A Garcia-Robledo, M Zangiabady", | 2 | "author": "SS Pandey, A Garcia-Robledo, M Zangiabady", | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "Publicaci\u00f3n", | 7 | "key": "Publicaci\u00f3n", | ||
8 | "value": "Conferencia" | 8 | "value": "Conferencia" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "Tipo", | 11 | "key": "Tipo", | ||
12 | "value": "Publicaci\u00f3n" | 12 | "value": "Publicaci\u00f3n" | ||
13 | } | 13 | } | ||
14 | ], | 14 | ], | ||
15 | "groups": [ | 15 | "groups": [ | ||
16 | { | 16 | { | ||
17 | "description": "Este grupo integra las publicaciones | 17 | "description": "Este grupo integra las publicaciones | ||
18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 18 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 19 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
20 | presentados en congresos nacionales e internacionales, manuscritos en | 20 | presentados en congresos nacionales e internacionales, manuscritos en | ||
21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 21 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 22 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 23 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 24 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 25 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
26 | "display_name": "Publicaciones", | 26 | "display_name": "Publicaciones", | ||
27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 27 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "publicaciones", | 29 | "name": "publicaciones", | ||
30 | "title": "Publicaciones" | 30 | "title": "Publicaciones" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "5a48d086-2d20-4c29-afc9-356a234acf42", | 33 | "id": "5a48d086-2d20-4c29-afc9-356a234acf42", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "license_id": null, | 35 | "license_id": null, | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "maintainer": null, | 37 | "maintainer": null, | ||
38 | "maintainer_email": null, | 38 | "maintainer_email": null, | ||
39 | "metadata_created": "2025-10-10T07:19:39.307897", | 39 | "metadata_created": "2025-10-10T07:19:39.307897", | ||
n | 40 | "metadata_modified": "2025-10-10T07:19:39.307905", | n | 40 | "metadata_modified": "2025-10-10T07:19:39.819444", |
41 | "name": | 41 | "name": | ||
42 | ed-states-a-bert-cnn-analysis-of-36-million-tweets-from-18a357adf762", | 42 | ed-states-a-bert-cnn-analysis-of-36-million-tweets-from-18a357adf762", | ||
43 | "notes": "Since its inception, social media has enabled people | 43 | "notes": "Since its inception, social media has enabled people | ||
44 | worldwide to connect with like-minded individuals and freely express | 44 | worldwide to connect with like-minded individuals and freely express | ||
45 | their thoughts and opinions. However, its widespread nature has not | 45 | their thoughts and opinions. However, its widespread nature has not | ||
46 | only had an immeasurable impact on society but also presented | 46 | only had an immeasurable impact on society but also presented | ||
47 | significant challenges. One such challenge is online hate speech. | 47 | significant challenges. One such challenge is online hate speech. | ||
48 | Consequently, the identification of hate speech has recently gained | 48 | Consequently, the identification of hate speech has recently gained | ||
49 | considerable attention, ranging from reactive methods, such as | 49 | considerable attention, ranging from reactive methods, such as | ||
50 | classifying individual posts, to proactive strategies that utilize | 50 | classifying individual posts, to proactive strategies that utilize | ||
51 | contextual information to decipher the complex lexicon of online | 51 | contextual information to decipher the complex lexicon of online | ||
52 | discussions. Despite these efforts, current research lacks a | 52 | discussions. Despite these efforts, current research lacks a | ||
53 | comprehensive analysis of hate speech on Twitter during the crucial | 53 | comprehensive analysis of hate speech on Twitter during the crucial | ||
54 | 2020-2022 period, marked by significant events such as the COVID-19 | 54 | 2020-2022 period, marked by significant events such as the COVID-19 | ||
55 | pandemic. In this paper, we present a BERT-based model for classifying | 55 | pandemic. In this paper, we present a BERT-based model for classifying | ||
56 | hate speech. To this end, we collected 36 million tweets posted in the | 56 | hate speech. To this end, we collected 36 million tweets posted in the | ||
57 | United States on Twitter during this period. We developed, trained, | 57 | United States on Twitter during this period. We developed, trained, | ||
58 | and tested a BERT-based Convolutional Neural Network (BERT-CNN), using | 58 | and tested a BERT-based Convolutional Neural Network (BERT-CNN), using | ||
59 | it to classify the collected tweets. The classification of this | 59 | it to classify the collected tweets. The classification of this | ||
60 | dataset revealed a high incidence of targets motivated by ethnicity, | 60 | dataset revealed a high incidence of targets motivated by ethnicity, | ||
61 | with gender and nationality as other prominent categories. This work | 61 | with gender and nationality as other prominent categories. This work | ||
62 | provides insightful data on the sentiments of individuals across the | 62 | provides insightful data on the sentiments of individuals across the | ||
63 | United States during the events of 2020-2022.", | 63 | United States during the events of 2020-2022.", | ||
n | 64 | "num_resources": 0, | n | 64 | "num_resources": 1, |
65 | "num_tags": 2, | 65 | "num_tags": 2, | ||
66 | "organization": { | 66 | "organization": { | ||
67 | "approval_status": "approved", | 67 | "approval_status": "approved", | ||
68 | "created": "2022-05-19T00:10:30.480393", | 68 | "created": "2022-05-19T00:10:30.480393", | ||
69 | "description": "Observatorio Metropolitano CentroGeo", | 69 | "description": "Observatorio Metropolitano CentroGeo", | ||
70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 70 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
71 | "image_url": | 71 | "image_url": | ||
72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 72 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "observatorio-metropolitano-centrogeo", | 74 | "name": "observatorio-metropolitano-centrogeo", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "Observatorio Metropolitano CentroGeo", | 76 | "title": "Observatorio Metropolitano CentroGeo", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 79 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2025-10-10T07:19:39.834501", | ||||
88 | "datastore_active": false, | ||||
89 | "description": "Since its inception, social media has enabled | ||||
90 | people worldwide to connect with like-minded individuals and freely | ||||
91 | express their thoughts and opinions. However, its widespread nature | ||||
92 | has not only had an immeasurable impact on society but also presented | ||||
93 | significant challenges. One such challenge is online hate speech. | ||||
94 | Consequently, the identification of hate speech has recently gained | ||||
95 | considerable attention, ranging from reactive methods, such as | ||||
96 | classifying individual posts, to proactive strategies that utilize | ||||
97 | contextual information to decipher the complex lexicon of online | ||||
98 | discussions. Despite these efforts, current research lacks a | ||||
99 | comprehensive analysis of hate speech on Twitter during the crucial | ||||
100 | 2020-2022 period, marked by significant events such as the COVID-19 | ||||
101 | pandemic. In this paper, we present a BERT-based model for classifying | ||||
102 | hate speech. To this end, we collected 36 million tweets posted in the | ||||
103 | United States on Twitter during this period. We developed, trained, | ||||
104 | and tested a BERT-based Convolutional Neural Network (BERT-CNN), using | ||||
105 | it to classify the collected tweets. The classification of this | ||||
106 | dataset revealed a high incidence of targets motivated by ethnicity, | ||||
107 | with gender and nationality as other prominent categories. This work | ||||
108 | provides insightful data on the sentiments of individuals across the | ||||
109 | United States during the events of 2020-2022.", | ||||
110 | "format": "HTML", | ||||
111 | "hash": "", | ||||
112 | "id": "3f7bd0d7-0293-4727-a4dc-df067feeb911", | ||||
113 | "last_modified": null, | ||||
114 | "metadata_modified": "2025-10-10T07:19:39.824362", | ||||
115 | "mimetype": null, | ||||
116 | "mimetype_inner": null, | ||||
117 | "name": "Decoding Online Hate in the United States: A BERT-CNN | ||||
118 | Analysis of 36 Million Tweets from 2020 to 2022", | ||||
119 | "package_id": "5a48d086-2d20-4c29-afc9-356a234acf42", | ||||
120 | "position": 0, | ||||
121 | "resource_type": null, | ||||
122 | "size": null, | ||||
123 | "state": "active", | ||||
124 | "url": "https://doi.org/10.1109/icsc59802.2024.00059", | ||||
125 | "url_type": null | ||||
126 | } | ||||
127 | ], | ||||
84 | "state": "active", | 128 | "state": "active", | ||
85 | "tags": [ | 129 | "tags": [ | ||
86 | { | 130 | { | ||
87 | "display_name": "computer-science", | 131 | "display_name": "computer-science", | ||
88 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 132 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
89 | "name": "computer-science", | 133 | "name": "computer-science", | ||
90 | "state": "active", | 134 | "state": "active", | ||
91 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
92 | }, | 136 | }, | ||
93 | { | 137 | { | ||
94 | "display_name": "decoding-methods", | 138 | "display_name": "decoding-methods", | ||
95 | "id": "8e5cd4be-c8aa-4b2c-906b-89abb0cffb68", | 139 | "id": "8e5cd4be-c8aa-4b2c-906b-89abb0cffb68", | ||
96 | "name": "decoding-methods", | 140 | "name": "decoding-methods", | ||
97 | "state": "active", | 141 | "state": "active", | ||
98 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
99 | } | 143 | } | ||
100 | ], | 144 | ], | ||
101 | "title": "Decoding Online Hate in the United States: A BERT-CNN | 145 | "title": "Decoding Online Hate in the United States: A BERT-CNN | ||
102 | Analysis of 36 Million Tweets from 2020 to 2022", | 146 | Analysis of 36 Million Tweets from 2020 to 2022", | ||
103 | "type": "dataset", | 147 | "type": "dataset", | ||
104 | "url": "https://doi.org/10.1109/icsc59802.2024.00059", | 148 | "url": "https://doi.org/10.1109/icsc59802.2024.00059", | ||
105 | "version": null | 149 | "version": null | ||
106 | } | 150 | } |