Cambios
En el instante 11 de octubre de 2025, 1:23:56 UTC,
-
Añadido recurso Comparison of Parallel Versions of SA and GA for Optimizing the Performance of a Robotic Manipulator a Comparison of Parallel Versions of SA and GA for Optimizing the Performance of a Robotic Manipulator
f | 1 | { | f | 1 | { |
2 | "author": "AH Baena, SI Valdez, F de Jes\u00fas Trujillo Romero, MM | 2 | "author": "AH Baena, SI Valdez, F de Jes\u00fas Trujillo Romero, MM | ||
3 | Montes", | 3 | Montes", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "Publicaci\u00f3n", | 8 | "key": "Publicaci\u00f3n", | ||
9 | "value": "Conferencia" | 9 | "value": "Conferencia" | ||
10 | }, | 10 | }, | ||
11 | { | 11 | { | ||
12 | "key": "Tipo", | 12 | "key": "Tipo", | ||
13 | "value": "Publicaci\u00f3n" | 13 | "value": "Publicaci\u00f3n" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "groups": [ | 16 | "groups": [ | ||
17 | { | 17 | { | ||
18 | "description": "Este grupo integra las publicaciones | 18 | "description": "Este grupo integra las publicaciones | ||
19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
21 | presentados en congresos nacionales e internacionales, manuscritos en | 21 | presentados en congresos nacionales e internacionales, manuscritos en | ||
22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
27 | "display_name": "Publicaciones", | 27 | "display_name": "Publicaciones", | ||
28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
29 | "image_display_url": "", | 29 | "image_display_url": "", | ||
30 | "name": "publicaciones", | 30 | "name": "publicaciones", | ||
31 | "title": "Publicaciones" | 31 | "title": "Publicaciones" | ||
32 | } | 32 | } | ||
33 | ], | 33 | ], | ||
34 | "id": "a2740417-a02e-4c1a-b647-9b9bcf21cf6e", | 34 | "id": "a2740417-a02e-4c1a-b647-9b9bcf21cf6e", | ||
35 | "isopen": false, | 35 | "isopen": false, | ||
36 | "license_id": null, | 36 | "license_id": null, | ||
37 | "license_title": null, | 37 | "license_title": null, | ||
38 | "maintainer": null, | 38 | "maintainer": null, | ||
39 | "maintainer_email": null, | 39 | "maintainer_email": null, | ||
40 | "metadata_created": "2025-10-11T01:23:55.490945", | 40 | "metadata_created": "2025-10-11T01:23:55.490945", | ||
n | 41 | "metadata_modified": "2025-10-11T01:23:55.490953", | n | 41 | "metadata_modified": "2025-10-11T01:23:55.984244", |
42 | "name": | 42 | "name": | ||
43 | of-sa-and-ga-for-optimizing-the-performance-of-a-roboti-f31ad338a648", | 43 | of-sa-and-ga-for-optimizing-the-performance-of-a-roboti-f31ad338a648", | ||
44 | "notes": "Deep learning (DL) is playing an increasingly important | 44 | "notes": "Deep learning (DL) is playing an increasingly important | ||
45 | role in our lives. It has already made a huge impact in areas, such as | 45 | role in our lives. It has already made a huge impact in areas, such as | ||
46 | cancer diagnosis, precision medicine, self-driving cars, predictive | 46 | cancer diagnosis, precision medicine, self-driving cars, predictive | ||
47 | forecasting, and speech recognition. The painstakingly handcrafted | 47 | forecasting, and speech recognition. The painstakingly handcrafted | ||
48 | feature extractors used in traditional learning, classification, and | 48 | feature extractors used in traditional learning, classification, and | ||
49 | pattern recognition systems are not scalable for large-sized data | 49 | pattern recognition systems are not scalable for large-sized data | ||
50 | sets. In many cases, depending on the problem complexity, DL can also | 50 | sets. In many cases, depending on the problem complexity, DL can also | ||
51 | overcome the limitations of earlier shallow networks that prevented | 51 | overcome the limitations of earlier shallow networks that prevented | ||
52 | efficient training and abstractions of hierarchical representations of | 52 | efficient training and abstractions of hierarchical representations of | ||
53 | multi-dimensional training data. Deep neural network (DNN) uses | 53 | multi-dimensional training data. Deep neural network (DNN) uses | ||
54 | multiple (deep) layers of units with highly optimized algorithms and | 54 | multiple (deep) layers of units with highly optimized algorithms and | ||
55 | architectures. This paper reviews several optimization methods to | 55 | architectures. This paper reviews several optimization methods to | ||
56 | improve the accuracy of the training and to reduce training time. We | 56 | improve the accuracy of the training and to reduce training time. We | ||
57 | delve into the math behind training algorithms used in recent deep | 57 | delve into the math behind training algorithms used in recent deep | ||
58 | networks. We describe current shortcomings, enhancements, and | 58 | networks. We describe current shortcomings, enhancements, and | ||
59 | implementations. The review also covers different types of deep | 59 | implementations. The review also covers different types of deep | ||
60 | architectures, such as deep convolution networks, deep residual | 60 | architectures, such as deep convolution networks, deep residual | ||
61 | networks, recurrent neural networks, reinforcement learning, | 61 | networks, recurrent neural networks, reinforcement learning, | ||
62 | variational autoencoders, and others.", | 62 | variational autoencoders, and others.", | ||
n | 63 | "num_resources": 0, | n | 63 | "num_resources": 1, |
64 | "num_tags": 13, | 64 | "num_tags": 13, | ||
65 | "organization": { | 65 | "organization": { | ||
66 | "approval_status": "approved", | 66 | "approval_status": "approved", | ||
67 | "created": "2022-05-19T00:10:30.480393", | 67 | "created": "2022-05-19T00:10:30.480393", | ||
68 | "description": "Observatorio Metropolitano CentroGeo", | 68 | "description": "Observatorio Metropolitano CentroGeo", | ||
69 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 69 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
70 | "image_url": | 70 | "image_url": | ||
71 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 71 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
72 | "is_organization": true, | 72 | "is_organization": true, | ||
73 | "name": "observatorio-metropolitano-centrogeo", | 73 | "name": "observatorio-metropolitano-centrogeo", | ||
74 | "state": "active", | 74 | "state": "active", | ||
75 | "title": "Observatorio Metropolitano CentroGeo", | 75 | "title": "Observatorio Metropolitano CentroGeo", | ||
76 | "type": "organization" | 76 | "type": "organization" | ||
77 | }, | 77 | }, | ||
78 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 78 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
79 | "private": false, | 79 | "private": false, | ||
80 | "relationships_as_object": [], | 80 | "relationships_as_object": [], | ||
81 | "relationships_as_subject": [], | 81 | "relationships_as_subject": [], | ||
t | 82 | "resources": [], | t | 82 | "resources": [ |
83 | { | ||||
84 | "cache_last_updated": null, | ||||
85 | "cache_url": null, | ||||
86 | "created": "2025-10-11T01:23:56.021597", | ||||
87 | "datastore_active": false, | ||||
88 | "description": "Deep learning (DL) is playing an increasingly | ||||
89 | important role in our lives. It has already made a huge impact in | ||||
90 | areas, such as cancer diagnosis, precision medicine, self-driving | ||||
91 | cars, predictive forecasting, and speech recognition. The | ||||
92 | painstakingly handcrafted feature extractors used in traditional | ||||
93 | learning, classification, and pattern recognition systems are not | ||||
94 | scalable for large-sized data sets. In many cases, depending on the | ||||
95 | problem complexity, DL can also overcome the limitations of earlier | ||||
96 | shallow networks that prevented efficient training and abstractions of | ||||
97 | hierarchical representations of multi-dimensional training data. Deep | ||||
98 | neural network (DNN) uses multiple (deep) layers of units with highly | ||||
99 | optimized algorithms and architectures. This paper reviews several | ||||
100 | optimization methods to improve the accuracy of the training and to | ||||
101 | reduce training time. We delve into the math behind training | ||||
102 | algorithms used in recent deep networks. We describe current | ||||
103 | shortcomings, enhancements, and implementations. The review also | ||||
104 | covers different types of deep architectures, such as deep convolution | ||||
105 | networks, deep residual networks, recurrent neural networks, | ||||
106 | reinforcement learning, variational autoencoders, and others.", | ||||
107 | "format": "HTML", | ||||
108 | "hash": "", | ||||
109 | "id": "bdfd243f-e938-4d4d-b162-61bff29e95a2", | ||||
110 | "last_modified": null, | ||||
111 | "metadata_modified": "2025-10-11T01:23:55.988750", | ||||
112 | "mimetype": null, | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "Comparison of Parallel Versions of SA and GA for | ||||
115 | Optimizing the Performance of a Robotic Manipulator", | ||||
116 | "package_id": "a2740417-a02e-4c1a-b647-9b9bcf21cf6e", | ||||
117 | "position": 0, | ||||
118 | "resource_type": null, | ||||
119 | "size": null, | ||||
120 | "state": "active", | ||||
121 | "url": "https://doi.org/10.1109/tensymp46218.2019.8971088", | ||||
122 | "url_type": null | ||||
123 | } | ||||
124 | ], | ||||
83 | "state": "active", | 125 | "state": "active", | ||
84 | "tags": [ | 126 | "tags": [ | ||
85 | { | 127 | { | ||
86 | "display_name": "artificial-intelligence", | 128 | "display_name": "artificial-intelligence", | ||
87 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 129 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
88 | "name": "artificial-intelligence", | 130 | "name": "artificial-intelligence", | ||
89 | "state": "active", | 131 | "state": "active", | ||
90 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
91 | }, | 133 | }, | ||
92 | { | 134 | { | ||
93 | "display_name": "artificial-neural-network", | 135 | "display_name": "artificial-neural-network", | ||
94 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | 136 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | ||
95 | "name": "artificial-neural-network", | 137 | "name": "artificial-neural-network", | ||
96 | "state": "active", | 138 | "state": "active", | ||
97 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
98 | }, | 140 | }, | ||
99 | { | 141 | { | ||
100 | "display_name": "computer-science", | 142 | "display_name": "computer-science", | ||
101 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 143 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
102 | "name": "computer-science", | 144 | "name": "computer-science", | ||
103 | "state": "active", | 145 | "state": "active", | ||
104 | "vocabulary_id": null | 146 | "vocabulary_id": null | ||
105 | }, | 147 | }, | ||
106 | { | 148 | { | ||
107 | "display_name": "convolution-computer-science", | 149 | "display_name": "convolution-computer-science", | ||
108 | "id": "a269c0f4-3317-41c8-b14a-ee7054066d07", | 150 | "id": "a269c0f4-3317-41c8-b14a-ee7054066d07", | ||
109 | "name": "convolution-computer-science", | 151 | "name": "convolution-computer-science", | ||
110 | "state": "active", | 152 | "state": "active", | ||
111 | "vocabulary_id": null | 153 | "vocabulary_id": null | ||
112 | }, | 154 | }, | ||
113 | { | 155 | { | ||
114 | "display_name": "deep-learning", | 156 | "display_name": "deep-learning", | ||
115 | "id": "2374322a-d83b-4c03-8b75-ba1d0b75384e", | 157 | "id": "2374322a-d83b-4c03-8b75-ba1d0b75384e", | ||
116 | "name": "deep-learning", | 158 | "name": "deep-learning", | ||
117 | "state": "active", | 159 | "state": "active", | ||
118 | "vocabulary_id": null | 160 | "vocabulary_id": null | ||
119 | }, | 161 | }, | ||
120 | { | 162 | { | ||
121 | "display_name": "deep-neural-networks", | 163 | "display_name": "deep-neural-networks", | ||
122 | "id": "4f23ca30-4b12-401d-a93c-958cf047df6e", | 164 | "id": "4f23ca30-4b12-401d-a93c-958cf047df6e", | ||
123 | "name": "deep-neural-networks", | 165 | "name": "deep-neural-networks", | ||
124 | "state": "active", | 166 | "state": "active", | ||
125 | "vocabulary_id": null | 167 | "vocabulary_id": null | ||
126 | }, | 168 | }, | ||
127 | { | 169 | { | ||
128 | "display_name": "feature-engineering", | 170 | "display_name": "feature-engineering", | ||
129 | "id": "69dbb3f7-b4af-43fd-89e9-e3ccd3b18571", | 171 | "id": "69dbb3f7-b4af-43fd-89e9-e3ccd3b18571", | ||
130 | "name": "feature-engineering", | 172 | "name": "feature-engineering", | ||
131 | "state": "active", | 173 | "state": "active", | ||
132 | "vocabulary_id": null | 174 | "vocabulary_id": null | ||
133 | }, | 175 | }, | ||
134 | { | 176 | { | ||
135 | "display_name": "feature-linguistics", | 177 | "display_name": "feature-linguistics", | ||
136 | "id": "359a6897-20b1-4cd2-bb05-6336c1652ac3", | 178 | "id": "359a6897-20b1-4cd2-bb05-6336c1652ac3", | ||
137 | "name": "feature-linguistics", | 179 | "name": "feature-linguistics", | ||
138 | "state": "active", | 180 | "state": "active", | ||
139 | "vocabulary_id": null | 181 | "vocabulary_id": null | ||
140 | }, | 182 | }, | ||
141 | { | 183 | { | ||
142 | "display_name": "implementation", | 184 | "display_name": "implementation", | ||
143 | "id": "96ea3448-7af9-42f3-a62b-38213202cb6a", | 185 | "id": "96ea3448-7af9-42f3-a62b-38213202cb6a", | ||
144 | "name": "implementation", | 186 | "name": "implementation", | ||
145 | "state": "active", | 187 | "state": "active", | ||
146 | "vocabulary_id": null | 188 | "vocabulary_id": null | ||
147 | }, | 189 | }, | ||
148 | { | 190 | { | ||
149 | "display_name": "machine-learning", | 191 | "display_name": "machine-learning", | ||
150 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | 192 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | ||
151 | "name": "machine-learning", | 193 | "name": "machine-learning", | ||
152 | "state": "active", | 194 | "state": "active", | ||
153 | "vocabulary_id": null | 195 | "vocabulary_id": null | ||
154 | }, | 196 | }, | ||
155 | { | 197 | { | ||
156 | "display_name": "reinforcement-learning", | 198 | "display_name": "reinforcement-learning", | ||
157 | "id": "b1e9ef04-913a-447b-a907-cf3f82e79749", | 199 | "id": "b1e9ef04-913a-447b-a907-cf3f82e79749", | ||
158 | "name": "reinforcement-learning", | 200 | "name": "reinforcement-learning", | ||
159 | "state": "active", | 201 | "state": "active", | ||
160 | "vocabulary_id": null | 202 | "vocabulary_id": null | ||
161 | }, | 203 | }, | ||
162 | { | 204 | { | ||
163 | "display_name": "residual", | 205 | "display_name": "residual", | ||
164 | "id": "8ffc0ed6-f88b-44bf-9a98-033b58222105", | 206 | "id": "8ffc0ed6-f88b-44bf-9a98-033b58222105", | ||
165 | "name": "residual", | 207 | "name": "residual", | ||
166 | "state": "active", | 208 | "state": "active", | ||
167 | "vocabulary_id": null | 209 | "vocabulary_id": null | ||
168 | }, | 210 | }, | ||
169 | { | 211 | { | ||
170 | "display_name": "scalability", | 212 | "display_name": "scalability", | ||
171 | "id": "0c20066c-b269-4406-97d7-dbbb52d722ca", | 213 | "id": "0c20066c-b269-4406-97d7-dbbb52d722ca", | ||
172 | "name": "scalability", | 214 | "name": "scalability", | ||
173 | "state": "active", | 215 | "state": "active", | ||
174 | "vocabulary_id": null | 216 | "vocabulary_id": null | ||
175 | } | 217 | } | ||
176 | ], | 218 | ], | ||
177 | "title": "Comparison of Parallel Versions of SA and GA for | 219 | "title": "Comparison of Parallel Versions of SA and GA for | ||
178 | Optimizing the Performance of a Robotic Manipulator", | 220 | Optimizing the Performance of a Robotic Manipulator", | ||
179 | "type": "dataset", | 221 | "type": "dataset", | ||
180 | "url": "https://doi.org/10.1109/tensymp46218.2019.8971088", | 222 | "url": "https://doi.org/10.1109/tensymp46218.2019.8971088", | ||
181 | "version": null | 223 | "version": null | ||
182 | } | 224 | } |