Cambios
En el instante 11 de octubre de 2025, 1:22:42 UTC,
-
Añadido recurso The Aiba-Edward kinetics adapted to the macro-homogeneous model for robust PEM fuel cell simulations a The Aiba-Edward kinetics adapted to the macro-homogeneous model for robust PEM fuel cell simulations
f | 1 | { | f | 1 | { |
2 | "author": "L Blanco-Cocom, S Botello-Rionda, LC Ordo\u00f1ez, \u00c1 | 2 | "author": "L Blanco-Cocom, S Botello-Rionda, LC Ordo\u00f1ez, \u00c1 | ||
3 | M\u00e9ndez-Hern\u00e1ndez, ...", | 3 | M\u00e9ndez-Hern\u00e1ndez, ...", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "Publicaci\u00f3n", | 8 | "key": "Publicaci\u00f3n", | ||
9 | "value": "Revista" | 9 | "value": "Revista" | ||
10 | }, | 10 | }, | ||
11 | { | 11 | { | ||
12 | "key": "Tipo", | 12 | "key": "Tipo", | ||
13 | "value": "Publicaci\u00f3n" | 13 | "value": "Publicaci\u00f3n" | ||
14 | } | 14 | } | ||
15 | ], | 15 | ], | ||
16 | "groups": [ | 16 | "groups": [ | ||
17 | { | 17 | { | ||
18 | "description": "Este grupo integra las publicaciones | 18 | "description": "Este grupo integra las publicaciones | ||
19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | 19 | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | ||
20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | 20 | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | ||
21 | presentados en congresos nacionales e internacionales, manuscritos en | 21 | presentados en congresos nacionales e internacionales, manuscritos en | ||
22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | 22 | formato preprint, cap\u00edtulos de libro y trabajos publicados en | ||
23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | 23 | revistas cient\u00edficas especializadas. Estos materiales reflejan la | ||
24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | 24 | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | ||
25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | 25 | an\u00e1lisis territorial del observatorio, contribuyendo al avance | ||
26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | 26 | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | ||
27 | "display_name": "Publicaciones", | 27 | "display_name": "Publicaciones", | ||
28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | 28 | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | ||
29 | "image_display_url": "", | 29 | "image_display_url": "", | ||
30 | "name": "publicaciones", | 30 | "name": "publicaciones", | ||
31 | "title": "Publicaciones" | 31 | "title": "Publicaciones" | ||
32 | } | 32 | } | ||
33 | ], | 33 | ], | ||
34 | "id": "746ae552-29bc-448b-bdf5-8dd078a21ae8", | 34 | "id": "746ae552-29bc-448b-bdf5-8dd078a21ae8", | ||
35 | "isopen": false, | 35 | "isopen": false, | ||
36 | "license_id": null, | 36 | "license_id": null, | ||
37 | "license_title": null, | 37 | "license_title": null, | ||
38 | "maintainer": null, | 38 | "maintainer": null, | ||
39 | "maintainer_email": null, | 39 | "maintainer_email": null, | ||
40 | "metadata_created": "2025-10-11T01:22:42.216185", | 40 | "metadata_created": "2025-10-11T01:22:42.216185", | ||
n | 41 | "metadata_modified": "2025-10-11T01:22:42.216194", | n | 41 | "metadata_modified": "2025-10-11T01:22:42.741928", |
42 | "name": | 42 | "name": | ||
43 | -to-the-macro-homogeneous-model-for-robust-pem-fuel-cel-e2483af97895", | 43 | -to-the-macro-homogeneous-model-for-robust-pem-fuel-cel-e2483af97895", | ||
44 | "notes": "A Proton exchange membrane fuel cell (PEMFC) is a device | 44 | "notes": "A Proton exchange membrane fuel cell (PEMFC) is a device | ||
45 | that efficiently transforms the chemical energy of a fuel into | 45 | that efficiently transforms the chemical energy of a fuel into | ||
46 | electrical energy, water, and heat. Numerical simulations facilitate | 46 | electrical energy, water, and heat. Numerical simulations facilitate | ||
47 | the design, analysis, and optimization of these devices, often relying | 47 | the design, analysis, and optimization of these devices, often relying | ||
48 | on models based on ordinary differential equations, such as the | 48 | on models based on ordinary differential equations, such as the | ||
49 | macrohomogeneous model (MH model). However, models for PEM fuel cell | 49 | macrohomogeneous model (MH model). However, models for PEM fuel cell | ||
50 | simulations that rely on exponential terms are often prone to | 50 | simulations that rely on exponential terms are often prone to | ||
51 | numerical instabilities and require extensive fine-tuning to replicate | 51 | numerical instabilities and require extensive fine-tuning to replicate | ||
52 | the underlying physical phenomena accurately. In some cases, the | 52 | the underlying physical phenomena accurately. In some cases, the | ||
53 | traditional macro-homogeneous model is unable to reproduce the full | 53 | traditional macro-homogeneous model is unable to reproduce the full | ||
54 | experimental performance of a PEMFC, as reported in specialized | 54 | experimental performance of a PEMFC, as reported in specialized | ||
55 | literature. In this article, an alternative mathematical model | 55 | literature. In this article, an alternative mathematical model | ||
56 | inspired by the kinetic growth rate of bacteria is presented as an | 56 | inspired by the kinetic growth rate of bacteria is presented as an | ||
57 | improved formulation for the macro-homogeneous model (MH model), which | 57 | improved formulation for the macro-homogeneous model (MH model), which | ||
58 | is commonly used to describe species dynamics through the catalyst | 58 | is commonly used to describe species dynamics through the catalyst | ||
59 | layer of a PEM fuel cell. This model is called the Adapted Aiba-Edward | 59 | layer of a PEM fuel cell. This model is called the Adapted Aiba-Edward | ||
60 | (AAE) model. This new surrogate model introduces a formulation for | 60 | (AAE) model. This new surrogate model introduces a formulation for | ||
61 | current density that preserves the multi-fidelity properties of the | 61 | current density that preserves the multi-fidelity properties of the | ||
62 | traditional MH model, achieving comparable accuracy in reproducing | 62 | traditional MH model, achieving comparable accuracy in reproducing | ||
63 | phenomena. According to the case studies reported in the Results | 63 | phenomena. According to the case studies reported in the Results | ||
64 | section, the AAE model demonstrates the potential to reduce | 64 | section, the AAE model demonstrates the potential to reduce | ||
65 | computational costs, expand the application domain, and maintain | 65 | computational costs, expand the application domain, and maintain | ||
66 | consistency with experimental data.", | 66 | consistency with experimental data.", | ||
n | 67 | "num_resources": 0, | n | 67 | "num_resources": 1, |
68 | "num_tags": 7, | 68 | "num_tags": 7, | ||
69 | "organization": { | 69 | "organization": { | ||
70 | "approval_status": "approved", | 70 | "approval_status": "approved", | ||
71 | "created": "2022-05-19T00:10:30.480393", | 71 | "created": "2022-05-19T00:10:30.480393", | ||
72 | "description": "Observatorio Metropolitano CentroGeo", | 72 | "description": "Observatorio Metropolitano CentroGeo", | ||
73 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 73 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
74 | "image_url": | 74 | "image_url": | ||
75 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 75 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
76 | "is_organization": true, | 76 | "is_organization": true, | ||
77 | "name": "observatorio-metropolitano-centrogeo", | 77 | "name": "observatorio-metropolitano-centrogeo", | ||
78 | "state": "active", | 78 | "state": "active", | ||
79 | "title": "Observatorio Metropolitano CentroGeo", | 79 | "title": "Observatorio Metropolitano CentroGeo", | ||
80 | "type": "organization" | 80 | "type": "organization" | ||
81 | }, | 81 | }, | ||
82 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 82 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
83 | "private": false, | 83 | "private": false, | ||
84 | "relationships_as_object": [], | 84 | "relationships_as_object": [], | ||
85 | "relationships_as_subject": [], | 85 | "relationships_as_subject": [], | ||
t | 86 | "resources": [], | t | 86 | "resources": [ |
87 | { | ||||
88 | "cache_last_updated": null, | ||||
89 | "cache_url": null, | ||||
90 | "created": "2025-10-11T01:22:42.763838", | ||||
91 | "datastore_active": false, | ||||
92 | "description": "A Proton exchange membrane fuel cell (PEMFC) is | ||||
93 | a device that efficiently transforms the chemical energy of a fuel | ||||
94 | into electrical energy, water, and heat. Numerical simulations | ||||
95 | facilitate the design, analysis, and optimization of these devices, | ||||
96 | often relying on models based on ordinary differential equations, such | ||||
97 | as the macrohomogeneous model (MH model). However, models for PEM fuel | ||||
98 | cell simulations that rely on exponential terms are often prone to | ||||
99 | numerical instabilities and require extensive fine-tuning to replicate | ||||
100 | the underlying physical phenomena accurately. In some cases, the | ||||
101 | traditional macro-homogeneous model is unable to reproduce the full | ||||
102 | experimental performance of a PEMFC, as reported in specialized | ||||
103 | literature. In this article, an alternative mathematical model | ||||
104 | inspired by the kinetic growth rate of bacteria is presented as an | ||||
105 | improved formulation for the macro-homogeneous model (MH model), which | ||||
106 | is commonly used to describe species dynamics through the catalyst | ||||
107 | layer of a PEM fuel cell. This model is called the Adapted Aiba-Edward | ||||
108 | (AAE) model. This new surrogate model introduces a formulation for | ||||
109 | current density that preserves the multi-fidelity properties of the | ||||
110 | traditional MH model, achieving comparable accuracy in reproducing | ||||
111 | phenomena. According to the case studies reported in the Results | ||||
112 | section, the AAE model demonstrates the potential to reduce | ||||
113 | computational costs, expand the application domain, and maintain | ||||
114 | consistency with experimental data.", | ||||
115 | "format": "HTML", | ||||
116 | "hash": "", | ||||
117 | "id": "fd9e4ae0-597c-4c22-9a6e-dcb1e4ecd2e6", | ||||
118 | "last_modified": null, | ||||
119 | "metadata_modified": "2025-10-11T01:22:42.745660", | ||||
120 | "mimetype": null, | ||||
121 | "mimetype_inner": null, | ||||
122 | "name": "The Aiba-Edward kinetics adapted to the | ||||
123 | macro-homogeneous model for robust PEM fuel cell simulations", | ||||
124 | "package_id": "746ae552-29bc-448b-bdf5-8dd078a21ae8", | ||||
125 | "position": 0, | ||||
126 | "resource_type": null, | ||||
127 | "size": null, | ||||
128 | "state": "active", | ||||
129 | "url": "https://doi.org/10.1016/j.rineng.2025.106450", | ||||
130 | "url_type": null | ||||
131 | } | ||||
132 | ], | ||||
87 | "state": "active", | 133 | "state": "active", | ||
88 | "tags": [ | 134 | "tags": [ | ||
89 | { | 135 | { | ||
90 | "display_name": "computer-science", | 136 | "display_name": "computer-science", | ||
91 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 137 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
92 | "name": "computer-science", | 138 | "name": "computer-science", | ||
93 | "state": "active", | 139 | "state": "active", | ||
94 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
95 | }, | 141 | }, | ||
96 | { | 142 | { | ||
97 | "display_name": "fuel-cells", | 143 | "display_name": "fuel-cells", | ||
98 | "id": "5527a96a-0519-463a-8628-b4b361401b53", | 144 | "id": "5527a96a-0519-463a-8628-b4b361401b53", | ||
99 | "name": "fuel-cells", | 145 | "name": "fuel-cells", | ||
100 | "state": "active", | 146 | "state": "active", | ||
101 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
102 | }, | 148 | }, | ||
103 | { | 149 | { | ||
104 | "display_name": "homogeneous", | 150 | "display_name": "homogeneous", | ||
105 | "id": "4203203b-5abe-49bf-a6d4-913b7b42ddab", | 151 | "id": "4203203b-5abe-49bf-a6d4-913b7b42ddab", | ||
106 | "name": "homogeneous", | 152 | "name": "homogeneous", | ||
107 | "state": "active", | 153 | "state": "active", | ||
108 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
109 | }, | 155 | }, | ||
110 | { | 156 | { | ||
111 | "display_name": "kinetics", | 157 | "display_name": "kinetics", | ||
112 | "id": "14d5313e-b0b4-48e5-ad00-9c84f30e0beb", | 158 | "id": "14d5313e-b0b4-48e5-ad00-9c84f30e0beb", | ||
113 | "name": "kinetics", | 159 | "name": "kinetics", | ||
114 | "state": "active", | 160 | "state": "active", | ||
115 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
116 | }, | 162 | }, | ||
117 | { | 163 | { | ||
118 | "display_name": "macro", | 164 | "display_name": "macro", | ||
119 | "id": "62671658-615a-4952-b3c4-2ce66ee2c926", | 165 | "id": "62671658-615a-4952-b3c4-2ce66ee2c926", | ||
120 | "name": "macro", | 166 | "name": "macro", | ||
121 | "state": "active", | 167 | "state": "active", | ||
122 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
123 | }, | 169 | }, | ||
124 | { | 170 | { | ||
125 | "display_name": "materials-science", | 171 | "display_name": "materials-science", | ||
126 | "id": "48ad1d13-6079-4bde-95db-5195bc4b7b43", | 172 | "id": "48ad1d13-6079-4bde-95db-5195bc4b7b43", | ||
127 | "name": "materials-science", | 173 | "name": "materials-science", | ||
128 | "state": "active", | 174 | "state": "active", | ||
129 | "vocabulary_id": null | 175 | "vocabulary_id": null | ||
130 | }, | 176 | }, | ||
131 | { | 177 | { | ||
132 | "display_name": "proton-exchange-membrane-fuel-cell", | 178 | "display_name": "proton-exchange-membrane-fuel-cell", | ||
133 | "id": "9db363bc-c2f8-40e4-897b-3586bf7c00b8", | 179 | "id": "9db363bc-c2f8-40e4-897b-3586bf7c00b8", | ||
134 | "name": "proton-exchange-membrane-fuel-cell", | 180 | "name": "proton-exchange-membrane-fuel-cell", | ||
135 | "state": "active", | 181 | "state": "active", | ||
136 | "vocabulary_id": null | 182 | "vocabulary_id": null | ||
137 | } | 183 | } | ||
138 | ], | 184 | ], | ||
139 | "title": "The Aiba-Edward kinetics adapted to the macro-homogeneous | 185 | "title": "The Aiba-Edward kinetics adapted to the macro-homogeneous | ||
140 | model for robust PEM fuel cell simulations", | 186 | model for robust PEM fuel cell simulations", | ||
141 | "type": "dataset", | 187 | "type": "dataset", | ||
142 | "url": "https://doi.org/10.1016/j.rineng.2025.106450", | 188 | "url": "https://doi.org/10.1016/j.rineng.2025.106450", | ||
143 | "version": null | 189 | "version": null | ||
144 | } | 190 | } |