f | { | f | { |
| "author": "A Diaz-Perez, A Garcia-Robledo, JL Gonzalez-Compean", | | "author": "A Diaz-Perez, A Garcia-Robledo, JL Gonzalez-Compean", |
| "author_email": null, | | "author_email": null, |
| "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", |
| "extras": [ | | "extras": [ |
| { | | { |
| "key": "Publicaci\u00f3n", | | "key": "Publicaci\u00f3n", |
| "value": "Cap\u00edtulo" | | "value": "Cap\u00edtulo" |
| }, | | }, |
| { | | { |
| "key": "Tipo", | | "key": "Tipo", |
| "value": "Publicaci\u00f3n" | | "value": "Publicaci\u00f3n" |
| } | | } |
| ], | | ], |
| "groups": [ | | "groups": [ |
| { | | { |
| "description": "Este grupo integra las publicaciones | | "description": "Este grupo integra las publicaciones |
| acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del | | acad\u00e9micas derivadas de los proyectos de investigaci\u00f3n del |
| Observatorio Metropolitano CentroGeo. Incluye art\u00edculos | | Observatorio Metropolitano CentroGeo. Incluye art\u00edculos |
| presentados en congresos nacionales e internacionales, manuscritos en | | presentados en congresos nacionales e internacionales, manuscritos en |
| formato preprint, cap\u00edtulos de libro y trabajos publicados en | | formato preprint, cap\u00edtulos de libro y trabajos publicados en |
| revistas cient\u00edficas especializadas. Estos materiales reflejan la | | revistas cient\u00edficas especializadas. Estos materiales reflejan la |
| labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y | | labor de investigaci\u00f3n, desarrollo metodol\u00f3gico y |
| an\u00e1lisis territorial del observatorio, contribuyendo al avance | | an\u00e1lisis territorial del observatorio, contribuyendo al avance |
| del conocimiento en temas urbanos, metropolitanos y geoespaciales.", | | del conocimiento en temas urbanos, metropolitanos y geoespaciales.", |
| "display_name": "Publicaciones", | | "display_name": "Publicaciones", |
| "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", | | "id": "a15a6b77-ddf5-4594-acab-7e772938a5b0", |
| "image_display_url": "", | | "image_display_url": "", |
| "name": "publicaciones", | | "name": "publicaciones", |
| "title": "Publicaciones" | | "title": "Publicaciones" |
| } | | } |
| ], | | ], |
| "id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | | "id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", |
| "isopen": false, | | "isopen": false, |
| "license_id": null, | | "license_id": null, |
| "license_title": null, | | "license_title": null, |
| "maintainer": null, | | "maintainer": null, |
| "maintainer_email": null, | | "maintainer_email": null, |
| "metadata_created": "2025-10-10T07:19:44.700180", | | "metadata_created": "2025-10-10T07:19:44.700180", |
n | "metadata_modified": "2025-10-10T07:19:45.164788", | n | "metadata_modified": "2025-10-10T07:19:53.652899", |
| "name": "graph-processing-frameworks-ad71c87a39c0", | | "name": "graph-processing-frameworks-ad71c87a39c0", |
n | "notes": "This chapter provides a comprehensive overview of graph | n | "notes": "This chapter provides a comprehensive overview of Graph |
| processing frameworks (GPFs)\u2014software systems designed to | | Processing Frameworks (GPFs), which are software systems designed to |
| efficiently analyze and compute on large-scale graph data. GPFs enable | | efficiently process large-scale graphs across distributed and parallel |
| the representation of entities as vertices and their relationships as | | computing environments. It begins by defining GPFs as toolsets for |
| edges, offering APIs and computation models that abstract low-level | | representing data as vertices and edges, emphasizing their role in |
| parallelization details while supporting diverse applications such as | | managing the three challenges of big data\u2014volume, velocity, and |
| social network analysis, biological systems, and fraud detection. The | | variety. The chapter classifies GPFs along four major dimensions: |
| authors classify more than twenty notable GPFs along four key | | target platform, computation model, graph processing approach, and |
| dimensions: target platform (shared, distributed, or hybrid memory), | | communication model. It reviews key frameworks\u2014such as Surfer, |
| computation model (MapReduce, BSP, GAS, GSA, etc.), processing | | Pegasus, GBase, Pregel, GraphX, Giraph, Gelly, GraphLab, GraphChi, and |
| approach (vertex-, edge-, subgraph-, or neighborhood-centric), and | | Totem\u2014covering their underlying architectures, data abstractions, |
| communication model (message passing, shared memory, or dataflow). | | and parallelization strategies, including MapReduce, Bulk Synchronous |
| Detailed discussions include classical frameworks like Pregel, | | Parallel (BSP), and Gather-Apply-Scatter (GAS) models. A practical |
| GraphLab, Giraph, and GraphX, as well as recent innovations leveraging | | example using Apache Flink\u2019s Gelly demonstrates how GPF APIs can |
| GPU, Hybrid Memory Cube (HMC), and ReRAM architectures (e.g., GraphH, | | be applied to compute the degree distribution of a large social |
| GraphP, GraphR). The chapter also illustrates a practical example of | | network, highlighting performance scalability with multicore systems. |
| computing the degree distribution of a large social network using the | | The chapter concludes by discussing future research directions, |
| Apache Flink Gelly API, demonstrating scalable parallel execution. In | | including graph partitioning in heterogeneous (CPU\u2013GPU) |
| closing, the authors identify open challenges in graph partitioning, | | environments, the need for standardized benchmarks, and challenges in |
| hybrid architectures, benchmarking, and performance evaluation, | | performance evaluation and algorithmic efficiency. Overall, it |
| emphasizing that efficient parallelization and resource-aware design | | situates GPFs as essential infrastructures for large-scale graph |
| remain central to advancing next-generation graph processing | | analytics in domains such as social networks, bioinformatics, and |
| systems.", | | cybersecurity.", |
| "num_resources": 1, | | "num_resources": 1, |
n | "num_tags": 0, | n | "num_tags": 6, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2022-05-19T00:10:30.480393", | | "created": "2022-05-19T00:10:30.480393", |
| "description": "Observatorio Metropolitano CentroGeo", | | "description": "Observatorio Metropolitano CentroGeo", |
| "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", |
| "image_url": | | "image_url": |
| "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", |
| "is_organization": true, | | "is_organization": true, |
| "name": "observatorio-metropolitano-centrogeo", | | "name": "observatorio-metropolitano-centrogeo", |
| "state": "active", | | "state": "active", |
| "title": "Observatorio Metropolitano CentroGeo", | | "title": "Observatorio Metropolitano CentroGeo", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", |
| "private": false, | | "private": false, |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
| "resources": [ | | "resources": [ |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2025-10-10T07:19:45.183144", | | "created": "2025-10-10T07:19:45.183144", |
| "datastore_active": false, | | "datastore_active": false, |
| "description": "This chapter provides a comprehensive overview | | "description": "This chapter provides a comprehensive overview |
| of graph processing frameworks (GPFs)\u2014software systems designed | | of graph processing frameworks (GPFs)\u2014software systems designed |
| to efficiently analyze and compute on large-scale graph data. GPFs | | to efficiently analyze and compute on large-scale graph data. GPFs |
| enable the representation of entities as vertices and their | | enable the representation of entities as vertices and their |
| relationships as edges, offering APIs and computation models that | | relationships as edges, offering APIs and computation models that |
| abstract low-level parallelization details while supporting diverse | | abstract low-level parallelization details while supporting diverse |
| applications such as social network analysis, biological systems, and | | applications such as social network analysis, biological systems, and |
| fraud detection. The authors classify more than twenty notable GPFs | | fraud detection. The authors classify more than twenty notable GPFs |
| along four key dimensions: target platform (shared, distributed, or | | along four key dimensions: target platform (shared, distributed, or |
| hybrid memory), computation model (MapReduce, BSP, GAS, GSA, etc.), | | hybrid memory), computation model (MapReduce, BSP, GAS, GSA, etc.), |
| processing approach (vertex-, edge-, subgraph-, or | | processing approach (vertex-, edge-, subgraph-, or |
| neighborhood-centric), and communication model (message passing, | | neighborhood-centric), and communication model (message passing, |
| shared memory, or dataflow). Detailed discussions include classical | | shared memory, or dataflow). Detailed discussions include classical |
| frameworks like Pregel, GraphLab, Giraph, and GraphX, as well as | | frameworks like Pregel, GraphLab, Giraph, and GraphX, as well as |
| recent innovations leveraging GPU, Hybrid Memory Cube (HMC), and ReRAM | | recent innovations leveraging GPU, Hybrid Memory Cube (HMC), and ReRAM |
| architectures (e.g., GraphH, GraphP, GraphR). The chapter also | | architectures (e.g., GraphH, GraphP, GraphR). The chapter also |
| illustrates a practical example of computing the degree distribution | | illustrates a practical example of computing the degree distribution |
| of a large social network using the Apache Flink Gelly API, | | of a large social network using the Apache Flink Gelly API, |
| demonstrating scalable parallel execution. In closing, the authors | | demonstrating scalable parallel execution. In closing, the authors |
| identify open challenges in graph partitioning, hybrid architectures, | | identify open challenges in graph partitioning, hybrid architectures, |
| benchmarking, and performance evaluation, emphasizing that efficient | | benchmarking, and performance evaluation, emphasizing that efficient |
| parallelization and resource-aware design remain central to advancing | | parallelization and resource-aware design remain central to advancing |
| next-generation graph processing systems.", | | next-generation graph processing systems.", |
| "format": "HTML", | | "format": "HTML", |
| "hash": "", | | "hash": "", |
| "id": "fc171422-0921-4ca1-9239-f31b4d9ec5d7", | | "id": "fc171422-0921-4ca1-9239-f31b4d9ec5d7", |
| "last_modified": null, | | "last_modified": null, |
n | "metadata_modified": "2025-10-10T07:19:45.177984", | n | "metadata_modified": "2025-10-10T07:19:53.656960", |
| "mimetype": null, | | "mimetype": null, |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "Graph Processing Frameworks", | | "name": "Graph Processing Frameworks", |
| "package_id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", | | "package_id": "7d26b887-9381-4f45-829b-4fb6ac60a43c", |
| "position": 0, | | "position": 0, |
| "resource_type": null, | | "resource_type": null, |
| "size": null, | | "size": null, |
| "state": "active", | | "state": "active", |
| "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", |
| "url_type": null | | "url_type": null |
| } | | } |
| ], | | ], |
| "state": "active", | | "state": "active", |
n | "tags": [], | n | "tags": [ |
| | | { |
| | | "display_name": "big-data", |
| | | "id": "9d010501-9c43-4888-8bde-6e679234a080", |
| | | "name": "big-data", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "computer-science", |
| | | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", |
| | | "name": "computer-science", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "distributed-computing", |
| | | "id": "e4749285-53bd-48e3-8b01-3ebb7b19d0ea", |
| | | "name": "distributed-computing", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "graphs", |
| | | "id": "4ce48277-b4dc-4efe-b30c-a82a07b000b4", |
| | | "name": "graphs", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "mapreduce", |
| | | "id": "179e2fcb-bbab-41b4-a188-fdef830e91cd", |
| | | "name": "mapreduce", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "network-science", |
| | | "id": "cded1316-bbe3-44dc-b08f-19d811df2330", |
| | | "name": "network-science", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | } |
| | | ], |
| "title": "Graph Processing Frameworks", | | "title": "Graph processing frameworks", |
| "type": "dataset", | | "type": "dataset", |
t | "url": "https://doi.org/10.1007/978-3-319-63962-8_283-2", | t | "url": "https://doi.org/10.1007/978-3-319-77525-8_283", |
| "version": null | | "version": null |
| } | | } |