Cambios
En el instante 21 de octubre de 2025, 9:01:31 UTC,
-
Añadido recurso Parameter Calibration of the Patch Growing Algorithm for Urban Land Change Simulations a Parameter Calibration of the Patch Growing Algorithm for Urban Land Change Simulations
| f | 1 | { | f | 1 | { |
| 2 | "author": "R Lopez-Farias, SI Valdez, A Garcia-Robledo", | 2 | "author": "R Lopez-Farias, SI Valdez, A Garcia-Robledo", | ||
| 3 | "author_email": null, | 3 | "author_email": null, | ||
| 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 5 | "extras": [ | 5 | "extras": [ | ||
| 6 | { | 6 | { | ||
| 7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
| 8 | "value": "2021" | 8 | "value": "2021" | ||
| 9 | }, | 9 | }, | ||
| 10 | { | 10 | { | ||
| 11 | "key": "DOI", | 11 | "key": "DOI", | ||
| 12 | "value": "https://doi.org/10.1109/enc53357.2021.9534789" | 12 | "value": "https://doi.org/10.1109/enc53357.2021.9534789" | ||
| 13 | }, | 13 | }, | ||
| 14 | { | 14 | { | ||
| 15 | "key": "Google Scholar URL", | 15 | "key": "Google Scholar URL", | ||
| 16 | "value": | 16 | "value": | ||
| 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:tKAzc9rXhukC" | 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:tKAzc9rXhukC" | ||
| 18 | }, | 18 | }, | ||
| 19 | { | 19 | { | ||
| 20 | "key": "Identificador hash", | 20 | "key": "Identificador hash", | ||
| 21 | "value": "5736cfe1ba23" | 21 | "value": "5736cfe1ba23" | ||
| 22 | }, | 22 | }, | ||
| 23 | { | 23 | { | ||
| 24 | "key": "Lugar de publicaci\u00f3n", | 24 | "key": "Lugar de publicaci\u00f3n", | ||
| 25 | "value": "2021 Mexican International Conference on Computer | 25 | "value": "2021 Mexican International Conference on Computer | ||
| 26 | Science (ENC), 1-8, 2021" | 26 | Science (ENC), 1-8, 2021" | ||
| 27 | }, | 27 | }, | ||
| 28 | { | 28 | { | ||
| 29 | "key": "Tipo", | 29 | "key": "Tipo", | ||
| 30 | "value": "Publicaci\u00f3n" | 30 | "value": "Publicaci\u00f3n" | ||
| 31 | }, | 31 | }, | ||
| 32 | { | 32 | { | ||
| 33 | "key": "Tipo de publicaci\u00f3n", | 33 | "key": "Tipo de publicaci\u00f3n", | ||
| 34 | "value": "Conferencia" | 34 | "value": "Conferencia" | ||
| 35 | }, | 35 | }, | ||
| 36 | { | 36 | { | ||
| 37 | "key": "URL directo", | 37 | "key": "URL directo", | ||
| 38 | "value": | 38 | "value": | ||
| 39 | "https://ieeexplore.ieee.org/abstract/document/9534789/" | 39 | "https://ieeexplore.ieee.org/abstract/document/9534789/" | ||
| 40 | } | 40 | } | ||
| 41 | ], | 41 | ], | ||
| 42 | "groups": [ | 42 | "groups": [ | ||
| 43 | { | 43 | { | ||
| 44 | "description": "", | 44 | "description": "", | ||
| 45 | "display_name": "Publicaciones", | 45 | "display_name": "Publicaciones", | ||
| 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
| 47 | "image_display_url": "", | 47 | "image_display_url": "", | ||
| 48 | "name": "publicaciones", | 48 | "name": "publicaciones", | ||
| 49 | "title": "Publicaciones" | 49 | "title": "Publicaciones" | ||
| 50 | } | 50 | } | ||
| 51 | ], | 51 | ], | ||
| 52 | "id": "3254df70-b09b-422b-8258-573fe3646fe1", | 52 | "id": "3254df70-b09b-422b-8258-573fe3646fe1", | ||
| 53 | "isopen": false, | 53 | "isopen": false, | ||
| 54 | "license_id": null, | 54 | "license_id": null, | ||
| 55 | "license_title": null, | 55 | "license_title": null, | ||
| 56 | "maintainer": null, | 56 | "maintainer": null, | ||
| 57 | "maintainer_email": null, | 57 | "maintainer_email": null, | ||
| 58 | "metadata_created": "2025-10-21T08:59:20.976841", | 58 | "metadata_created": "2025-10-21T08:59:20.976841", | ||
| n | 59 | "metadata_modified": "2025-10-21T09:01:30.345845", | n | 59 | "metadata_modified": "2025-10-21T09:01:30.965058", |
| 60 | "name": "5736cfe1ba23", | 60 | "name": "5736cfe1ba23", | ||
| 61 | "notes": "Urban growth modelling is a current trend in | 61 | "notes": "Urban growth modelling is a current trend in | ||
| 62 | geo-computation due to its impact on the local living environment and | 62 | geo-computation due to its impact on the local living environment and | ||
| 63 | the quality of life. The FUTure Urban-Regional Environment Simulation | 63 | the quality of life. The FUTure Urban-Regional Environment Simulation | ||
| 64 | (FUTURES) model produces projections of landscape patterns by coupling | 64 | (FUTURES) model produces projections of landscape patterns by coupling | ||
| 65 | land suitability, per-capita demand, and patch growing algorithm (PGA) | 65 | land suitability, per-capita demand, and patch growing algorithm (PGA) | ||
| 66 | sub-models. In particular, the PGA is the urban growing simulator | 66 | sub-models. In particular, the PGA is the urban growing simulator | ||
| 67 | component that takes into account the stochastic nature of urban | 67 | component that takes into account the stochastic nature of urban | ||
| 68 | development. It requires a set of parameters, namely compactness mean, | 68 | development. It requires a set of parameters, namely compactness mean, | ||
| 69 | compactness range, and discount factor to approximate the general | 69 | compactness range, and discount factor to approximate the general | ||
| 70 | characteristics of the urban development structure. The fitness of the | 70 | characteristics of the urban development structure. The fitness of the | ||
| 71 | parameters is measured by computing the difference between the area | 71 | parameters is measured by computing the difference between the area | ||
| 72 | and compactness histograms of the observed and simulated urban | 72 | and compactness histograms of the observed and simulated urban | ||
| 73 | growths. On the one hand, the authors find these parameters via an | 73 | growths. On the one hand, the authors find these parameters via an | ||
| 74 | exhaustive grid search; nevertheless, this requires evaluating all the | 74 | exhaustive grid search; nevertheless, this requires evaluating all the | ||
| 75 | points in the grid, which implies a high computational cost because | 75 | points in the grid, which implies a high computational cost because | ||
| 76 | each point is associated with several PGA simulations. In addition, | 76 | each point is associated with several PGA simulations. In addition, | ||
| 77 | the approximation is limited to be one of the points in the grid. | 77 | the approximation is limited to be one of the points in the grid. | ||
| 78 | Thus, the better the precision is, the higher the required | 78 | Thus, the better the precision is, the higher the required | ||
| 79 | computational cost. On the other hand, evolutionary algorithms have | 79 | computational cost. On the other hand, evolutionary algorithms have | ||
| 80 | been widely used for the automatic calibration of parameters but, in | 80 | been widely used for the automatic calibration of parameters but, in | ||
| 81 | general, they are not designed to use a low number of evaluations, | 81 | general, they are not designed to use a low number of evaluations, | ||
| 82 | require expert tuning, and to define the stop criteria. Therefore, we | 82 | require expert tuning, and to define the stop criteria. Therefore, we | ||
| 83 | propose an algorithm to find the adequate parameters, with minimum | 83 | propose an algorithm to find the adequate parameters, with minimum | ||
| 84 | expert intervention, using an Estimation of Distribution Algorithm | 84 | expert intervention, using an Estimation of Distribution Algorithm | ||
| 85 | designed to use a low number of function evaluations (EDALNFE) when | 85 | designed to use a low number of function evaluations (EDALNFE) when | ||
| 86 | compared to the grid search. EDALNFE provides several assets: it | 86 | compared to the grid search. EDALNFE provides several assets: it | ||
| 87 | delivers competitive results, it requires a low number of function | 87 | delivers competitive results, it requires a low number of function | ||
| 88 | evaluations, it does not require expert settings, and it is equipped | 88 | evaluations, it does not require expert settings, and it is equipped | ||
| 89 | with an automatic stop criterion. The proposed algorithm is compared | 89 | with an automatic stop criterion. The proposed algorithm is compared | ||
| 90 | to exhaustive grid search (the only method readily available in the | 90 | to exhaustive grid search (the only method readily available in the | ||
| 91 | FUTURES package) and differential evolution to demonstrate its | 91 | FUTURES package) and differential evolution to demonstrate its | ||
| 92 | superior performance.", | 92 | superior performance.", | ||
| n | 93 | "num_resources": 1, | n | 93 | "num_resources": 2, |
| 94 | "num_tags": 12, | 94 | "num_tags": 12, | ||
| 95 | "organization": { | 95 | "organization": { | ||
| 96 | "approval_status": "approved", | 96 | "approval_status": "approved", | ||
| 97 | "created": "2022-05-19T00:10:30.480393", | 97 | "created": "2022-05-19T00:10:30.480393", | ||
| 98 | "description": "Observatorio Metropolitano CentroGeo", | 98 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 99 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 99 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 100 | "image_url": | 100 | "image_url": | ||
| 101 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 101 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 102 | "is_organization": true, | 102 | "is_organization": true, | ||
| 103 | "name": "observatorio-metropolitano-centrogeo", | 103 | "name": "observatorio-metropolitano-centrogeo", | ||
| 104 | "state": "active", | 104 | "state": "active", | ||
| 105 | "title": "Observatorio Metropolitano CentroGeo", | 105 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 106 | "type": "organization" | 106 | "type": "organization" | ||
| 107 | }, | 107 | }, | ||
| 108 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 108 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 109 | "private": false, | 109 | "private": false, | ||
| 110 | "relationships_as_object": [], | 110 | "relationships_as_object": [], | ||
| 111 | "relationships_as_subject": [], | 111 | "relationships_as_subject": [], | ||
| 112 | "resources": [ | 112 | "resources": [ | ||
| 113 | { | 113 | { | ||
| 114 | "cache_last_updated": null, | 114 | "cache_last_updated": null, | ||
| 115 | "cache_url": null, | 115 | "cache_url": null, | ||
| 116 | "created": "2025-10-21T08:59:21.546061", | 116 | "created": "2025-10-21T08:59:21.546061", | ||
| 117 | "datastore_active": false, | 117 | "datastore_active": false, | ||
| 118 | "description": "Urban growth modelling is a current trend in | 118 | "description": "Urban growth modelling is a current trend in | ||
| 119 | geo-computation due to its impact on the local living environment and | 119 | geo-computation due to its impact on the local living environment and | ||
| 120 | the quality of life. The FUTure Urban-Regional Environment Simulation | 120 | the quality of life. The FUTure Urban-Regional Environment Simulation | ||
| 121 | (FUTURES) model produces projections of landscape patterns by coupling | 121 | (FUTURES) model produces projections of landscape patterns by coupling | ||
| 122 | land suitability, per-capita demand, and patch growing algorithm (PGA) | 122 | land suitability, per-capita demand, and patch growing algorithm (PGA) | ||
| 123 | sub-models. In particular, the PGA is the urban growing simulator | 123 | sub-models. In particular, the PGA is the urban growing simulator | ||
| 124 | component that takes into account the stochastic nature of urban | 124 | component that takes into account the stochastic nature of urban | ||
| 125 | development. It requires a set of parameters, namely compactness mean, | 125 | development. It requires a set of parameters, namely compactness mean, | ||
| 126 | compactness range, and discount factor to approximate the general | 126 | compactness range, and discount factor to approximate the general | ||
| 127 | characteristics of the urban development structure. The fitness of the | 127 | characteristics of the urban development structure. The fitness of the | ||
| 128 | parameters is measured by computing the difference between the area | 128 | parameters is measured by computing the difference between the area | ||
| 129 | and compactness histograms of the observed and simulated urban | 129 | and compactness histograms of the observed and simulated urban | ||
| 130 | growths. On the one hand, the authors find these parameters via an | 130 | growths. On the one hand, the authors find these parameters via an | ||
| 131 | exhaustive grid search; nevertheless, this requires evaluating all the | 131 | exhaustive grid search; nevertheless, this requires evaluating all the | ||
| 132 | points in the grid, which implies a high computational cost because | 132 | points in the grid, which implies a high computational cost because | ||
| 133 | each point is associated with several PGA simulations. In addition, | 133 | each point is associated with several PGA simulations. In addition, | ||
| 134 | the approximation is limited to be one of the points in the grid. | 134 | the approximation is limited to be one of the points in the grid. | ||
| 135 | Thus, the better the precision is, the higher the required | 135 | Thus, the better the precision is, the higher the required | ||
| 136 | computational cost. On the other hand, evolutionary algorithms have | 136 | computational cost. On the other hand, evolutionary algorithms have | ||
| 137 | been widely used for the automatic calibration of parameters but, in | 137 | been widely used for the automatic calibration of parameters but, in | ||
| 138 | general, they are not designed to use a low number of evaluations, | 138 | general, they are not designed to use a low number of evaluations, | ||
| 139 | require expert tuning, and to define the stop criteria. Therefore, we | 139 | require expert tuning, and to define the stop criteria. Therefore, we | ||
| 140 | propose an algorithm to find the adequate parameters, with minimum | 140 | propose an algorithm to find the adequate parameters, with minimum | ||
| 141 | expert intervention, using an Estimation of Distribution Algorithm | 141 | expert intervention, using an Estimation of Distribution Algorithm | ||
| 142 | designed to use a low number of function evaluations (EDALNFE) when | 142 | designed to use a low number of function evaluations (EDALNFE) when | ||
| 143 | compared to the grid search. EDALNFE provides several assets: it | 143 | compared to the grid search. EDALNFE provides several assets: it | ||
| 144 | delivers competitive results, it requires a low number of function | 144 | delivers competitive results, it requires a low number of function | ||
| 145 | evaluations, it does not require expert settings, and it is equipped | 145 | evaluations, it does not require expert settings, and it is equipped | ||
| 146 | with an automatic stop criterion. The proposed algorithm is compared | 146 | with an automatic stop criterion. The proposed algorithm is compared | ||
| 147 | to exhaustive grid search (the only method readily available in the | 147 | to exhaustive grid search (the only method readily available in the | ||
| 148 | FUTURES package) and differential evolution to demonstrate its | 148 | FUTURES package) and differential evolution to demonstrate its | ||
| 149 | superior performance.", | 149 | superior performance.", | ||
| 150 | "format": "HTML", | 150 | "format": "HTML", | ||
| 151 | "hash": "", | 151 | "hash": "", | ||
| 152 | "id": "bda05cb0-9773-4166-87af-ab42ee6f1b03", | 152 | "id": "bda05cb0-9773-4166-87af-ab42ee6f1b03", | ||
| 153 | "last_modified": null, | 153 | "last_modified": null, | ||
| 154 | "metadata_modified": "2025-10-21T09:01:30.350034", | 154 | "metadata_modified": "2025-10-21T09:01:30.350034", | ||
| 155 | "mimetype": null, | 155 | "mimetype": null, | ||
| 156 | "mimetype_inner": null, | 156 | "mimetype_inner": null, | ||
| 157 | "name": "Parameter Calibration of the Patch Growing Algorithm | 157 | "name": "Parameter Calibration of the Patch Growing Algorithm | ||
| 158 | for Urban Land Change Simulations", | 158 | for Urban Land Change Simulations", | ||
| 159 | "package_id": "3254df70-b09b-422b-8258-573fe3646fe1", | 159 | "package_id": "3254df70-b09b-422b-8258-573fe3646fe1", | ||
| 160 | "position": 0, | 160 | "position": 0, | ||
| 161 | "resource_type": null, | 161 | "resource_type": null, | ||
| 162 | "size": null, | 162 | "size": null, | ||
| 163 | "state": "active", | 163 | "state": "active", | ||
| 164 | "url": | 164 | "url": | ||
| 165 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:LkGwnXOMwfcC", | 165 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:LkGwnXOMwfcC", | ||
| 166 | "url_type": null | 166 | "url_type": null | ||
| t | t | 167 | }, | ||
| 168 | { | ||||
| 169 | "cache_last_updated": null, | ||||
| 170 | "cache_url": null, | ||||
| 171 | "created": "2025-10-21T09:01:31.004964", | ||||
| 172 | "datastore_active": false, | ||||
| 173 | "description": "Urban growth modelling is a current trend in | ||||
| 174 | geo-computation due to its impact on the local living environment and | ||||
| 175 | the quality of life. The FUTure Urban-Regional Environment Simulation | ||||
| 176 | (FUTURES) model produces projections of landscape patterns by coupling | ||||
| 177 | land suitability, per-capita demand, and patch growing algorithm (PGA) | ||||
| 178 | sub-models. In particular, the PGA is the urban growing simulator | ||||
| 179 | component that takes into account the stochastic nature of urban | ||||
| 180 | development. It requires a set of parameters, namely compactness mean, | ||||
| 181 | compactness range, and discount factor to approximate the general | ||||
| 182 | characteristics of the urban development structure. The fitness of the | ||||
| 183 | parameters is measured by computing the difference between the area | ||||
| 184 | and compactness histograms of the observed and simulated urban | ||||
| 185 | growths. On the one hand, the authors find these parameters via an | ||||
| 186 | exhaustive grid search; nevertheless, this requires evaluating all the | ||||
| 187 | points in the grid, which implies a high computational cost because | ||||
| 188 | each point is associated with several PGA simulations. In addition, | ||||
| 189 | the approximation is limited to be one of the points in the grid. | ||||
| 190 | Thus, the better the precision is, the higher the required | ||||
| 191 | computational cost. On the other hand, evolutionary algorithms have | ||||
| 192 | been widely used for the automatic calibration of parameters but, in | ||||
| 193 | general, they are not designed to use a low number of evaluations, | ||||
| 194 | require expert tuning, and to define the stop criteria. Therefore, we | ||||
| 195 | propose an algorithm to find the adequate parameters, with minimum | ||||
| 196 | expert intervention, using an Estimation of Distribution Algorithm | ||||
| 197 | designed to use a low number of function evaluations (EDALNFE) when | ||||
| 198 | compared to the grid search. EDALNFE provides several assets: it | ||||
| 199 | delivers competitive results, it requires a low number of function | ||||
| 200 | evaluations, it does not require expert settings, and it is equipped | ||||
| 201 | with an automatic stop criterion. The proposed algorithm is compared | ||||
| 202 | to exhaustive grid search (the only method readily available in the | ||||
| 203 | FUTURES package) and differential evolution to demonstrate its | ||||
| 204 | superior performance.", | ||||
| 205 | "format": "HTML", | ||||
| 206 | "hash": "", | ||||
| 207 | "id": "c1b6f24b-9c8c-4eb0-9bb5-fcc51473ec74", | ||||
| 208 | "last_modified": null, | ||||
| 209 | "metadata_modified": "2025-10-21T09:01:30.969660", | ||||
| 210 | "mimetype": null, | ||||
| 211 | "mimetype_inner": null, | ||||
| 212 | "name": "Parameter Calibration of the Patch Growing Algorithm | ||||
| 213 | for Urban Land Change Simulations", | ||||
| 214 | "package_id": "3254df70-b09b-422b-8258-573fe3646fe1", | ||||
| 215 | "position": 1, | ||||
| 216 | "resource_type": null, | ||||
| 217 | "size": null, | ||||
| 218 | "state": "active", | ||||
| 219 | "url": | ||||
| 220 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:tKAzc9rXhukC", | ||||
| 221 | "url_type": null | ||||
| 167 | } | 222 | } | ||
| 168 | ], | 223 | ], | ||
| 169 | "state": "active", | 224 | "state": "active", | ||
| 170 | "tags": [ | 225 | "tags": [ | ||
| 171 | { | 226 | { | ||
| 172 | "display_name": "2021", | 227 | "display_name": "2021", | ||
| 173 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | 228 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | ||
| 174 | "name": "2021", | 229 | "name": "2021", | ||
| 175 | "state": "active", | 230 | "state": "active", | ||
| 176 | "vocabulary_id": null | 231 | "vocabulary_id": null | ||
| 177 | }, | 232 | }, | ||
| 178 | { | 233 | { | ||
| 179 | "display_name": "albertogarob", | 234 | "display_name": "albertogarob", | ||
| 180 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | 235 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | ||
| 181 | "name": "albertogarob", | 236 | "name": "albertogarob", | ||
| 182 | "state": "active", | 237 | "state": "active", | ||
| 183 | "vocabulary_id": null | 238 | "vocabulary_id": null | ||
| 184 | }, | 239 | }, | ||
| 185 | { | 240 | { | ||
| 186 | "display_name": "algorithm", | 241 | "display_name": "algorithm", | ||
| 187 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | 242 | "id": "da224d7c-d794-48c8-8316-05d6b5fdc51c", | ||
| 188 | "name": "algorithm", | 243 | "name": "algorithm", | ||
| 189 | "state": "active", | 244 | "state": "active", | ||
| 190 | "vocabulary_id": null | 245 | "vocabulary_id": null | ||
| 191 | }, | 246 | }, | ||
| 192 | { | 247 | { | ||
| 193 | "display_name": "calibration", | 248 | "display_name": "calibration", | ||
| 194 | "id": "57aaaf8e-b348-4b10-bb60-62ad1d2773c6", | 249 | "id": "57aaaf8e-b348-4b10-bb60-62ad1d2773c6", | ||
| 195 | "name": "calibration", | 250 | "name": "calibration", | ||
| 196 | "state": "active", | 251 | "state": "active", | ||
| 197 | "vocabulary_id": null | 252 | "vocabulary_id": null | ||
| 198 | }, | 253 | }, | ||
| 199 | { | 254 | { | ||
| 200 | "display_name": "computation", | 255 | "display_name": "computation", | ||
| 201 | "id": "7360e5e0-ae0d-4cd2-8974-a4f49ac17663", | 256 | "id": "7360e5e0-ae0d-4cd2-8974-a4f49ac17663", | ||
| 202 | "name": "computation", | 257 | "name": "computation", | ||
| 203 | "state": "active", | 258 | "state": "active", | ||
| 204 | "vocabulary_id": null | 259 | "vocabulary_id": null | ||
| 205 | }, | 260 | }, | ||
| 206 | { | 261 | { | ||
| 207 | "display_name": "computer-science", | 262 | "display_name": "computer-science", | ||
| 208 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 263 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
| 209 | "name": "computer-science", | 264 | "name": "computer-science", | ||
| 210 | "state": "active", | 265 | "state": "active", | ||
| 211 | "vocabulary_id": null | 266 | "vocabulary_id": null | ||
| 212 | }, | 267 | }, | ||
| 213 | { | 268 | { | ||
| 214 | "display_name": "grid", | 269 | "display_name": "grid", | ||
| 215 | "id": "ffb14913-8224-4760-8d62-ba7cfcdb4542", | 270 | "id": "ffb14913-8224-4760-8d62-ba7cfcdb4542", | ||
| 216 | "name": "grid", | 271 | "name": "grid", | ||
| 217 | "state": "active", | 272 | "state": "active", | ||
| 218 | "vocabulary_id": null | 273 | "vocabulary_id": null | ||
| 219 | }, | 274 | }, | ||
| 220 | { | 275 | { | ||
| 221 | "display_name": "histogram", | 276 | "display_name": "histogram", | ||
| 222 | "id": "933d7267-334e-4f94-b55e-e7a80b3da092", | 277 | "id": "933d7267-334e-4f94-b55e-e7a80b3da092", | ||
| 223 | "name": "histogram", | 278 | "name": "histogram", | ||
| 224 | "state": "active", | 279 | "state": "active", | ||
| 225 | "vocabulary_id": null | 280 | "vocabulary_id": null | ||
| 226 | }, | 281 | }, | ||
| 227 | { | 282 | { | ||
| 228 | "display_name": "mathematical-optimization", | 283 | "display_name": "mathematical-optimization", | ||
| 229 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | 284 | "id": "b33a86ee-df39-4619-8165-c8d73afbf5a4", | ||
| 230 | "name": "mathematical-optimization", | 285 | "name": "mathematical-optimization", | ||
| 231 | "state": "active", | 286 | "state": "active", | ||
| 232 | "vocabulary_id": null | 287 | "vocabulary_id": null | ||
| 233 | }, | 288 | }, | ||
| 234 | { | 289 | { | ||
| 235 | "display_name": "range-aeronautics", | 290 | "display_name": "range-aeronautics", | ||
| 236 | "id": "631e97f4-5be6-4bf1-a707-33ebbb9778fa", | 291 | "id": "631e97f4-5be6-4bf1-a707-33ebbb9778fa", | ||
| 237 | "name": "range-aeronautics", | 292 | "name": "range-aeronautics", | ||
| 238 | "state": "active", | 293 | "state": "active", | ||
| 239 | "vocabulary_id": null | 294 | "vocabulary_id": null | ||
| 240 | }, | 295 | }, | ||
| 241 | { | 296 | { | ||
| 242 | "display_name": "set-abstract-data-type", | 297 | "display_name": "set-abstract-data-type", | ||
| 243 | "id": "b2cf6bcc-6aa2-4a45-9c63-4066f4e32845", | 298 | "id": "b2cf6bcc-6aa2-4a45-9c63-4066f4e32845", | ||
| 244 | "name": "set-abstract-data-type", | 299 | "name": "set-abstract-data-type", | ||
| 245 | "state": "active", | 300 | "state": "active", | ||
| 246 | "vocabulary_id": null | 301 | "vocabulary_id": null | ||
| 247 | }, | 302 | }, | ||
| 248 | { | 303 | { | ||
| 249 | "display_name": "svaldez", | 304 | "display_name": "svaldez", | ||
| 250 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 305 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
| 251 | "name": "svaldez", | 306 | "name": "svaldez", | ||
| 252 | "state": "active", | 307 | "state": "active", | ||
| 253 | "vocabulary_id": null | 308 | "vocabulary_id": null | ||
| 254 | } | 309 | } | ||
| 255 | ], | 310 | ], | ||
| 256 | "title": "Parameter Calibration of the Patch Growing Algorithm for | 311 | "title": "Parameter Calibration of the Patch Growing Algorithm for | ||
| 257 | Urban Land Change Simulations", | 312 | Urban Land Change Simulations", | ||
| 258 | "type": "dataset", | 313 | "type": "dataset", | ||
| 259 | "url": | 314 | "url": | ||
| 260 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:tKAzc9rXhukC", | 315 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:tKAzc9rXhukC", | ||
| 261 | "version": null | 316 | "version": null | ||
| 262 | } | 317 | } |
