Cambios
En el instante 21 de octubre de 2025, 9:01:25 UTC,
-
Añadido recurso Spatio-temporal interpolation of rainfall data in western Mexico a Spatio-temporal interpolation of rainfall data in western Mexico
| f | 1 | { | f | 1 | { |
| 2 | "author": "ZCM Vargas, SI Valdez, J Paredes-Tavares", | 2 | "author": "ZCM Vargas, SI Valdez, J Paredes-Tavares", | ||
| 3 | "author_email": null, | 3 | "author_email": null, | ||
| 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 5 | "extras": [ | 5 | "extras": [ | ||
| 6 | { | 6 | { | ||
| 7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
| 8 | "value": "2021" | 8 | "value": "2021" | ||
| 9 | }, | 9 | }, | ||
| 10 | { | 10 | { | ||
| 11 | "key": "DOI", | 11 | "key": "DOI", | ||
| 12 | "value": "https://doi.org/10.1109/enc53357.2021.9534803" | 12 | "value": "https://doi.org/10.1109/enc53357.2021.9534803" | ||
| 13 | }, | 13 | }, | ||
| 14 | { | 14 | { | ||
| 15 | "key": "Google Scholar URL", | 15 | "key": "Google Scholar URL", | ||
| 16 | "value": | 16 | "value": | ||
| 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC" | 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC" | ||
| 18 | }, | 18 | }, | ||
| 19 | { | 19 | { | ||
| 20 | "key": "Identificador hash", | 20 | "key": "Identificador hash", | ||
| 21 | "value": "f1f82b7987a7" | 21 | "value": "f1f82b7987a7" | ||
| 22 | }, | 22 | }, | ||
| 23 | { | 23 | { | ||
| 24 | "key": "Lugar de publicaci\u00f3n", | 24 | "key": "Lugar de publicaci\u00f3n", | ||
| 25 | "value": "2021 Mexican International Conference on Computer | 25 | "value": "2021 Mexican International Conference on Computer | ||
| 26 | Science (ENC), 1-8, 2021" | 26 | Science (ENC), 1-8, 2021" | ||
| 27 | }, | 27 | }, | ||
| 28 | { | 28 | { | ||
| 29 | "key": "Tipo", | 29 | "key": "Tipo", | ||
| 30 | "value": "Publicaci\u00f3n" | 30 | "value": "Publicaci\u00f3n" | ||
| 31 | }, | 31 | }, | ||
| 32 | { | 32 | { | ||
| 33 | "key": "Tipo de publicaci\u00f3n", | 33 | "key": "Tipo de publicaci\u00f3n", | ||
| 34 | "value": "Conferencia" | 34 | "value": "Conferencia" | ||
| 35 | }, | 35 | }, | ||
| 36 | { | 36 | { | ||
| 37 | "key": "URL directo", | 37 | "key": "URL directo", | ||
| 38 | "value": | 38 | "value": | ||
| 39 | "https://ieeexplore.ieee.org/abstract/document/9534803/" | 39 | "https://ieeexplore.ieee.org/abstract/document/9534803/" | ||
| 40 | } | 40 | } | ||
| 41 | ], | 41 | ], | ||
| 42 | "groups": [ | 42 | "groups": [ | ||
| 43 | { | 43 | { | ||
| 44 | "description": "", | 44 | "description": "", | ||
| 45 | "display_name": "Publicaciones", | 45 | "display_name": "Publicaciones", | ||
| 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
| 47 | "image_display_url": "", | 47 | "image_display_url": "", | ||
| 48 | "name": "publicaciones", | 48 | "name": "publicaciones", | ||
| 49 | "title": "Publicaciones" | 49 | "title": "Publicaciones" | ||
| 50 | } | 50 | } | ||
| 51 | ], | 51 | ], | ||
| 52 | "id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | 52 | "id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | ||
| 53 | "isopen": false, | 53 | "isopen": false, | ||
| 54 | "license_id": null, | 54 | "license_id": null, | ||
| 55 | "license_title": null, | 55 | "license_title": null, | ||
| 56 | "maintainer": null, | 56 | "maintainer": null, | ||
| 57 | "maintainer_email": null, | 57 | "maintainer_email": null, | ||
| 58 | "metadata_created": "2025-10-21T09:01:24.764036", | 58 | "metadata_created": "2025-10-21T09:01:24.764036", | ||
| n | 59 | "metadata_modified": "2025-10-21T09:01:24.764045", | n | 59 | "metadata_modified": "2025-10-21T09:01:25.242394", |
| 60 | "name": "f1f82b7987a7", | 60 | "name": "f1f82b7987a7", | ||
| 61 | "notes": "One of the most common problems related to meteorological | 61 | "notes": "One of the most common problems related to meteorological | ||
| 62 | information is the missing registers. This lack of data generates | 62 | information is the missing registers. This lack of data generates | ||
| 63 | uncertainties in the analysis of climate, hydrology, and natural | 63 | uncertainties in the analysis of climate, hydrology, and natural | ||
| 64 | disasters. In Mexico, very often, this problem is present in all the | 64 | disasters. In Mexico, very often, this problem is present in all the | ||
| 65 | meteorological stations of the country. In this study, we apply two | 65 | meteorological stations of the country. In this study, we apply two | ||
| 66 | well-established spatial interpolation methods that have report | 66 | well-established spatial interpolation methods that have report | ||
| 67 | competitive performance in the specialized literature: the Inverse | 67 | competitive performance in the specialized literature: the Inverse | ||
| 68 | Distance Weighting (IDW) and Modified Inverse Distance Weighting | 68 | Distance Weighting (IDW) and Modified Inverse Distance Weighting | ||
| 69 | (MIDW); and they are compared with a proposal of spatio-temporal | 69 | (MIDW); and they are compared with a proposal of spatio-temporal | ||
| 70 | regression using an artificial neural network of the kind of | 70 | regression using an artificial neural network of the kind of | ||
| 71 | multilayer perceptron (MLP). The results show that using a combination | 71 | multilayer perceptron (MLP). The results show that using a combination | ||
| 72 | of spatial and temporal data with a low number of predictors is | 72 | of spatial and temporal data with a low number of predictors is | ||
| 73 | competitive with the comparing methods using a high number of | 73 | competitive with the comparing methods using a high number of | ||
| 74 | predictors. We compare the methods through statistical measures of the | 74 | predictors. We compare the methods through statistical measures of the | ||
| 75 | error for 31 meteorological stations of the Jalisco state in the | 75 | error for 31 meteorological stations of the Jalisco state in the | ||
| 76 | period of 2002-2006.", | 76 | period of 2002-2006.", | ||
| n | 77 | "num_resources": 0, | n | 77 | "num_resources": 1, |
| 78 | "num_tags": 17, | 78 | "num_tags": 17, | ||
| 79 | "organization": { | 79 | "organization": { | ||
| 80 | "approval_status": "approved", | 80 | "approval_status": "approved", | ||
| 81 | "created": "2022-05-19T00:10:30.480393", | 81 | "created": "2022-05-19T00:10:30.480393", | ||
| 82 | "description": "Observatorio Metropolitano CentroGeo", | 82 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 83 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 83 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 84 | "image_url": | 84 | "image_url": | ||
| 85 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 85 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 86 | "is_organization": true, | 86 | "is_organization": true, | ||
| 87 | "name": "observatorio-metropolitano-centrogeo", | 87 | "name": "observatorio-metropolitano-centrogeo", | ||
| 88 | "state": "active", | 88 | "state": "active", | ||
| 89 | "title": "Observatorio Metropolitano CentroGeo", | 89 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 90 | "type": "organization" | 90 | "type": "organization" | ||
| 91 | }, | 91 | }, | ||
| 92 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 92 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 93 | "private": false, | 93 | "private": false, | ||
| 94 | "relationships_as_object": [], | 94 | "relationships_as_object": [], | ||
| 95 | "relationships_as_subject": [], | 95 | "relationships_as_subject": [], | ||
| t | 96 | "resources": [], | t | 96 | "resources": [ |
| 97 | { | ||||
| 98 | "cache_last_updated": null, | ||||
| 99 | "cache_url": null, | ||||
| 100 | "created": "2025-10-21T09:01:25.283761", | ||||
| 101 | "datastore_active": false, | ||||
| 102 | "description": "One of the most common problems related to | ||||
| 103 | meteorological information is the missing registers. This lack of data | ||||
| 104 | generates uncertainties in the analysis of climate, hydrology, and | ||||
| 105 | natural disasters. In Mexico, very often, this problem is present in | ||||
| 106 | all the meteorological stations of the country. In this study, we | ||||
| 107 | apply two well-established spatial interpolation methods that have | ||||
| 108 | report competitive performance in the specialized literature: the | ||||
| 109 | Inverse Distance Weighting (IDW) and Modified Inverse Distance | ||||
| 110 | Weighting (MIDW); and they are compared with a proposal of | ||||
| 111 | spatio-temporal regression using an artificial neural network of the | ||||
| 112 | kind of multilayer perceptron (MLP). The results show that using a | ||||
| 113 | combination of spatial and temporal data with a low number of | ||||
| 114 | predictors is competitive with the comparing methods using a high | ||||
| 115 | number of predictors. We compare the methods through statistical | ||||
| 116 | measures of the error for 31 meteorological stations of the Jalisco | ||||
| 117 | state in the period of 2002-2006.", | ||||
| 118 | "format": "HTML", | ||||
| 119 | "hash": "", | ||||
| 120 | "id": "a99bad5b-56ed-44ff-9ee3-6572a3785e4f", | ||||
| 121 | "last_modified": null, | ||||
| 122 | "metadata_modified": "2025-10-21T09:01:25.246022", | ||||
| 123 | "mimetype": null, | ||||
| 124 | "mimetype_inner": null, | ||||
| 125 | "name": "Spatio-temporal interpolation of rainfall data in | ||||
| 126 | western Mexico", | ||||
| 127 | "package_id": "d87c470f-ebf9-4d19-abf6-c8498d29e201", | ||||
| 128 | "position": 0, | ||||
| 129 | "resource_type": null, | ||||
| 130 | "size": null, | ||||
| 131 | "state": "active", | ||||
| 132 | "url": | ||||
| 133 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC", | ||||
| 134 | "url_type": null | ||||
| 135 | } | ||||
| 136 | ], | ||||
| 97 | "state": "active", | 137 | "state": "active", | ||
| 98 | "tags": [ | 138 | "tags": [ | ||
| 99 | { | 139 | { | ||
| 100 | "display_name": "2021", | 140 | "display_name": "2021", | ||
| 101 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | 141 | "id": "79560db5-a3ce-45a1-80a6-2de3f9c2cf63", | ||
| 102 | "name": "2021", | 142 | "name": "2021", | ||
| 103 | "state": "active", | 143 | "state": "active", | ||
| 104 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
| 105 | }, | 145 | }, | ||
| 106 | { | 146 | { | ||
| 107 | "display_name": "artificial-neural-network", | 147 | "display_name": "artificial-neural-network", | ||
| 108 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | 148 | "id": "d63d29ea-7b70-4ed5-83cc-66f3b9586c1c", | ||
| 109 | "name": "artificial-neural-network", | 149 | "name": "artificial-neural-network", | ||
| 110 | "state": "active", | 150 | "state": "active", | ||
| 111 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
| 112 | }, | 152 | }, | ||
| 113 | { | 153 | { | ||
| 114 | "display_name": "computer-science", | 154 | "display_name": "computer-science", | ||
| 115 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 155 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
| 116 | "name": "computer-science", | 156 | "name": "computer-science", | ||
| 117 | "state": "active", | 157 | "state": "active", | ||
| 118 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
| 119 | }, | 159 | }, | ||
| 120 | { | 160 | { | ||
| 121 | "display_name": "data-mining", | 161 | "display_name": "data-mining", | ||
| 122 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | 162 | "id": "bc92b940-6ae7-4005-9885-39c0bf8e2aa7", | ||
| 123 | "name": "data-mining", | 163 | "name": "data-mining", | ||
| 124 | "state": "active", | 164 | "state": "active", | ||
| 125 | "vocabulary_id": null | 165 | "vocabulary_id": null | ||
| 126 | }, | 166 | }, | ||
| 127 | { | 167 | { | ||
| 128 | "display_name": "geography", | 168 | "display_name": "geography", | ||
| 129 | "id": "26d92c26-2661-4858-bbad-409a405f763f", | 169 | "id": "26d92c26-2661-4858-bbad-409a405f763f", | ||
| 130 | "name": "geography", | 170 | "name": "geography", | ||
| 131 | "state": "active", | 171 | "state": "active", | ||
| 132 | "vocabulary_id": null | 172 | "vocabulary_id": null | ||
| 133 | }, | 173 | }, | ||
| 134 | { | 174 | { | ||
| 135 | "display_name": "interpolation-computer-graphics", | 175 | "display_name": "interpolation-computer-graphics", | ||
| 136 | "id": "b6e48f98-d6d0-4803-9ec9-f43e775b3e3a", | 176 | "id": "b6e48f98-d6d0-4803-9ec9-f43e775b3e3a", | ||
| 137 | "name": "interpolation-computer-graphics", | 177 | "name": "interpolation-computer-graphics", | ||
| 138 | "state": "active", | 178 | "state": "active", | ||
| 139 | "vocabulary_id": null | 179 | "vocabulary_id": null | ||
| 140 | }, | 180 | }, | ||
| 141 | { | 181 | { | ||
| 142 | "display_name": "inverse-distance-weighting", | 182 | "display_name": "inverse-distance-weighting", | ||
| 143 | "id": "7406f1bc-3c8a-4b81-a582-d8c8ab0fe465", | 183 | "id": "7406f1bc-3c8a-4b81-a582-d8c8ab0fe465", | ||
| 144 | "name": "inverse-distance-weighting", | 184 | "name": "inverse-distance-weighting", | ||
| 145 | "state": "active", | 185 | "state": "active", | ||
| 146 | "vocabulary_id": null | 186 | "vocabulary_id": null | ||
| 147 | }, | 187 | }, | ||
| 148 | { | 188 | { | ||
| 149 | "display_name": "jparedes", | 189 | "display_name": "jparedes", | ||
| 150 | "id": "45de6aed-42af-4ad7-8cc0-166ea484921e", | 190 | "id": "45de6aed-42af-4ad7-8cc0-166ea484921e", | ||
| 151 | "name": "jparedes", | 191 | "name": "jparedes", | ||
| 152 | "state": "active", | 192 | "state": "active", | ||
| 153 | "vocabulary_id": null | 193 | "vocabulary_id": null | ||
| 154 | }, | 194 | }, | ||
| 155 | { | 195 | { | ||
| 156 | "display_name": "meteorology", | 196 | "display_name": "meteorology", | ||
| 157 | "id": "2ca9823c-d03b-4c5d-98d8-7c839897cd25", | 197 | "id": "2ca9823c-d03b-4c5d-98d8-7c839897cd25", | ||
| 158 | "name": "meteorology", | 198 | "name": "meteorology", | ||
| 159 | "state": "active", | 199 | "state": "active", | ||
| 160 | "vocabulary_id": null | 200 | "vocabulary_id": null | ||
| 161 | }, | 201 | }, | ||
| 162 | { | 202 | { | ||
| 163 | "display_name": "missing-data", | 203 | "display_name": "missing-data", | ||
| 164 | "id": "10ad299c-8793-49fb-9e11-deca21618978", | 204 | "id": "10ad299c-8793-49fb-9e11-deca21618978", | ||
| 165 | "name": "missing-data", | 205 | "name": "missing-data", | ||
| 166 | "state": "active", | 206 | "state": "active", | ||
| 167 | "vocabulary_id": null | 207 | "vocabulary_id": null | ||
| 168 | }, | 208 | }, | ||
| 169 | { | 209 | { | ||
| 170 | "display_name": "multilayer-perceptron", | 210 | "display_name": "multilayer-perceptron", | ||
| 171 | "id": "60f49ef1-5d88-4eb6-9100-b57565b36ac7", | 211 | "id": "60f49ef1-5d88-4eb6-9100-b57565b36ac7", | ||
| 172 | "name": "multilayer-perceptron", | 212 | "name": "multilayer-perceptron", | ||
| 173 | "state": "active", | 213 | "state": "active", | ||
| 174 | "vocabulary_id": null | 214 | "vocabulary_id": null | ||
| 175 | }, | 215 | }, | ||
| 176 | { | 216 | { | ||
| 177 | "display_name": "multivariate-interpolation", | 217 | "display_name": "multivariate-interpolation", | ||
| 178 | "id": "dabe0c40-2f4b-4a3b-be68-205ae0c59ab7", | 218 | "id": "dabe0c40-2f4b-4a3b-be68-205ae0c59ab7", | ||
| 179 | "name": "multivariate-interpolation", | 219 | "name": "multivariate-interpolation", | ||
| 180 | "state": "active", | 220 | "state": "active", | ||
| 181 | "vocabulary_id": null | 221 | "vocabulary_id": null | ||
| 182 | }, | 222 | }, | ||
| 183 | { | 223 | { | ||
| 184 | "display_name": "perceptron", | 224 | "display_name": "perceptron", | ||
| 185 | "id": "db4be28c-c2bf-4a93-b3f4-9b6e51ae471d", | 225 | "id": "db4be28c-c2bf-4a93-b3f4-9b6e51ae471d", | ||
| 186 | "name": "perceptron", | 226 | "name": "perceptron", | ||
| 187 | "state": "active", | 227 | "state": "active", | ||
| 188 | "vocabulary_id": null | 228 | "vocabulary_id": null | ||
| 189 | }, | 229 | }, | ||
| 190 | { | 230 | { | ||
| 191 | "display_name": "regression", | 231 | "display_name": "regression", | ||
| 192 | "id": "0a62c1a6-d0bf-42d4-a43b-9edab20627e6", | 232 | "id": "0a62c1a6-d0bf-42d4-a43b-9edab20627e6", | ||
| 193 | "name": "regression", | 233 | "name": "regression", | ||
| 194 | "state": "active", | 234 | "state": "active", | ||
| 195 | "vocabulary_id": null | 235 | "vocabulary_id": null | ||
| 196 | }, | 236 | }, | ||
| 197 | { | 237 | { | ||
| 198 | "display_name": "spatial-analysis", | 238 | "display_name": "spatial-analysis", | ||
| 199 | "id": "8b17cb4b-47dc-45d1-96dd-1e677bb43458", | 239 | "id": "8b17cb4b-47dc-45d1-96dd-1e677bb43458", | ||
| 200 | "name": "spatial-analysis", | 240 | "name": "spatial-analysis", | ||
| 201 | "state": "active", | 241 | "state": "active", | ||
| 202 | "vocabulary_id": null | 242 | "vocabulary_id": null | ||
| 203 | }, | 243 | }, | ||
| 204 | { | 244 | { | ||
| 205 | "display_name": "svaldez", | 245 | "display_name": "svaldez", | ||
| 206 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 246 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
| 207 | "name": "svaldez", | 247 | "name": "svaldez", | ||
| 208 | "state": "active", | 248 | "state": "active", | ||
| 209 | "vocabulary_id": null | 249 | "vocabulary_id": null | ||
| 210 | }, | 250 | }, | ||
| 211 | { | 251 | { | ||
| 212 | "display_name": "weighting", | 252 | "display_name": "weighting", | ||
| 213 | "id": "1215aeaf-94a9-41aa-94f9-1c445cd394f1", | 253 | "id": "1215aeaf-94a9-41aa-94f9-1c445cd394f1", | ||
| 214 | "name": "weighting", | 254 | "name": "weighting", | ||
| 215 | "state": "active", | 255 | "state": "active", | ||
| 216 | "vocabulary_id": null | 256 | "vocabulary_id": null | ||
| 217 | } | 257 | } | ||
| 218 | ], | 258 | ], | ||
| 219 | "title": "Spatio-temporal interpolation of rainfall data in western | 259 | "title": "Spatio-temporal interpolation of rainfall data in western | ||
| 220 | Mexico", | 260 | Mexico", | ||
| 221 | "type": "dataset", | 261 | "type": "dataset", | ||
| 222 | "url": | 262 | "url": | ||
| 223 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC", | 263 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:_Re3VWB3Y0AC", | ||
| 224 | "version": null | 264 | "version": null | ||
| 225 | } | 265 | } |
