Cambios
En el instante 30 de octubre de 2025, 2:29:04 UTC,
-
Añadida etiqueta 2022 de Simulación SUMO de Tráfico Vehicular en el Centro de Querétaro
-
Añadidos los siguientes campos a Simulación SUMO de Tráfico Vehicular en el Centro de Querétaro
- Fecha con valor 06/07/2022
- Año con valor 2022
| f | 1 | { | f | 1 | { |
| 2 | "author": "Alberto Garc\u00eda Robledo <agarcia@centrogeo.edu.mx>", | 2 | "author": "Alberto Garc\u00eda Robledo <agarcia@centrogeo.edu.mx>", | ||
| 3 | "author_email": null, | 3 | "author_email": null, | ||
| 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 5 | "extras": [ | 5 | "extras": [ | ||
| 6 | { | 6 | { | ||
| 7 | "key": "Autores de contenido", | 7 | "key": "Autores de contenido", | ||
| 8 | "value": "Alberto Garc\u00eda Robledo | 8 | "value": "Alberto Garc\u00eda Robledo | ||
| 9 | <agarcia@centrogeo.edu.mx>" | 9 | <agarcia@centrogeo.edu.mx>" | ||
| 10 | }, | 10 | }, | ||
| 11 | { | 11 | { | ||
| 12 | "key": "Autores t\u00e9cnicos", | 12 | "key": "Autores t\u00e9cnicos", | ||
| 13 | "value": "Alberto Garc\u00eda Robledo | 13 | "value": "Alberto Garc\u00eda Robledo | ||
| 14 | <agarcia@centrogeo.edu.mx>" | 14 | <agarcia@centrogeo.edu.mx>" | ||
| 15 | }, | 15 | }, | ||
| 16 | { | 16 | { | ||
| n | n | 17 | "key": "A\u00f1o", | ||
| 18 | "value": "2022" | ||||
| 19 | }, | ||||
| 20 | { | ||||
| 17 | "key": "Contacto de contenidos", | 21 | "key": "Contacto de contenidos", | ||
| 18 | "value": "Alberto Garc\u00eda Robledo | 22 | "value": "Alberto Garc\u00eda Robledo | ||
| 19 | <agarcia@centrogeo.edu.mx>" | 23 | <agarcia@centrogeo.edu.mx>" | ||
| 20 | }, | 24 | }, | ||
| 21 | { | 25 | { | ||
| 22 | "key": "Contacto t\u00e9cnico", | 26 | "key": "Contacto t\u00e9cnico", | ||
| 23 | "value": "Alberto Garc\u00eda Robledo | 27 | "value": "Alberto Garc\u00eda Robledo | ||
| 24 | <agarcia@centrogeo.edu.mx>" | 28 | <agarcia@centrogeo.edu.mx>" | ||
| n | n | 29 | }, | ||
| 30 | { | ||||
| 31 | "key": "Fecha", | ||||
| 32 | "value": "06/07/2022" | ||||
| 25 | }, | 33 | }, | ||
| 26 | { | 34 | { | ||
| 27 | "key": "Fecha de actualizaci\u00f3n", | 35 | "key": "Fecha de actualizaci\u00f3n", | ||
| 28 | "value": "06/07/22" | 36 | "value": "06/07/22" | ||
| 29 | }, | 37 | }, | ||
| 30 | { | 38 | { | ||
| 31 | "key": "Identificador hash", | 39 | "key": "Identificador hash", | ||
| 32 | "value": "6b3eabdaf30a" | 40 | "value": "6b3eabdaf30a" | ||
| 33 | }, | 41 | }, | ||
| 34 | { | 42 | { | ||
| 35 | "key": "Idioma", | 43 | "key": "Idioma", | ||
| 36 | "value": "Ingl\u00e9s" | 44 | "value": "Ingl\u00e9s" | ||
| 37 | }, | 45 | }, | ||
| 38 | { | 46 | { | ||
| 39 | "key": "Tipo", | 47 | "key": "Tipo", | ||
| 40 | "value": "Visualizaci\u00f3n" | 48 | "value": "Visualizaci\u00f3n" | ||
| 41 | }, | 49 | }, | ||
| 42 | { | 50 | { | ||
| 43 | "key": "URL", | 51 | "key": "URL", | ||
| 44 | "value": | 52 | "value": | ||
| 45 | sualizacion.observatoriogeo.mx/sylvereyesumo/dashboard/sylvereyesumo/" | 53 | sualizacion.observatoriogeo.mx/sylvereyesumo/dashboard/sylvereyesumo/" | ||
| 46 | }, | 54 | }, | ||
| 47 | { | 55 | { | ||
| 48 | "key": "URL del thumbnail", | 56 | "key": "URL del thumbnail", | ||
| 49 | "value": | 57 | "value": | ||
| 50 | vatoriogeo.mx/wp-content/uploads/2025/10/demo-dash-sylvereye-dash.png" | 58 | vatoriogeo.mx/wp-content/uploads/2025/10/demo-dash-sylvereye-dash.png" | ||
| 51 | }, | 59 | }, | ||
| 52 | { | 60 | { | ||
| 53 | "key": "Versi\u00f3n", | 61 | "key": "Versi\u00f3n", | ||
| 54 | "value": "v1.0.0" | 62 | "value": "v1.0.0" | ||
| 55 | } | 63 | } | ||
| 56 | ], | 64 | ], | ||
| 57 | "groups": [ | 65 | "groups": [ | ||
| 58 | { | 66 | { | ||
| 59 | "description": "", | 67 | "description": "", | ||
| 60 | "display_name": "Visualizaciones", | 68 | "display_name": "Visualizaciones", | ||
| 61 | "id": "2b5bec50-1abb-4886-841d-ea9b266fefc8", | 69 | "id": "2b5bec50-1abb-4886-841d-ea9b266fefc8", | ||
| 62 | "image_display_url": "", | 70 | "image_display_url": "", | ||
| 63 | "name": "visualizaciones", | 71 | "name": "visualizaciones", | ||
| 64 | "title": "Visualizaciones" | 72 | "title": "Visualizaciones" | ||
| 65 | } | 73 | } | ||
| 66 | ], | 74 | ], | ||
| 67 | "id": "b4e93120-fe8b-4147-a331-440177402ab7", | 75 | "id": "b4e93120-fe8b-4147-a331-440177402ab7", | ||
| 68 | "isopen": false, | 76 | "isopen": false, | ||
| 69 | "license_id": null, | 77 | "license_id": null, | ||
| 70 | "license_title": null, | 78 | "license_title": null, | ||
| 71 | "maintainer": null, | 79 | "maintainer": null, | ||
| 72 | "maintainer_email": null, | 80 | "maintainer_email": null, | ||
| 73 | "metadata_created": "2025-10-25T03:36:21.672391", | 81 | "metadata_created": "2025-10-25T03:36:21.672391", | ||
| n | 74 | "metadata_modified": "2025-10-25T03:36:22.189585", | n | 82 | "metadata_modified": "2025-10-30T02:29:03.956933", |
| 75 | "name": "6b3eabdaf30a", | 83 | "name": "6b3eabdaf30a", | ||
| 76 | "notes": "El tablero \u201cSimulaci\u00f3n SUMO de Tr\u00e1fico | 84 | "notes": "El tablero \u201cSimulaci\u00f3n SUMO de Tr\u00e1fico | ||
| 77 | Vehicular en el Centro de Quer\u00e9taro\u201d presenta una | 85 | Vehicular en el Centro de Quer\u00e9taro\u201d presenta una | ||
| 78 | visualizaci\u00f3n interactiva desarrollada con el framework Dash, la | 86 | visualizaci\u00f3n interactiva desarrollada con el framework Dash, la | ||
| 79 | cual utiliza la biblioteca Dash Sylvereye para el an\u00e1lisis | 87 | cual utiliza la biblioteca Dash Sylvereye para el an\u00e1lisis | ||
| 80 | postmortem de una simulaci\u00f3n vehicular realizada sobre la red de | 88 | postmortem de una simulaci\u00f3n vehicular realizada sobre la red de | ||
| 81 | calles del centro de la ciudad de Quer\u00e9taro, M\u00e9xico.\n\nLas | 89 | calles del centro de la ciudad de Quer\u00e9taro, M\u00e9xico.\n\nLas | ||
| 82 | simulaciones fueron generadas con SUMO (Simulation of Urban MObility), | 90 | simulaciones fueron generadas con SUMO (Simulation of Urban MObility), | ||
| 83 | un simulador ampliamente usado en el an\u00e1lisis urbano y de | 91 | un simulador ampliamente usado en el an\u00e1lisis urbano y de | ||
| 84 | transporte, que permite modelar el movimiento de veh\u00edculos a lo | 92 | transporte, que permite modelar el movimiento de veh\u00edculos a lo | ||
| 85 | largo del tiempo en redes urbanas reales.\n\nEn el dashboard, la | 93 | largo del tiempo en redes urbanas reales.\n\nEn el dashboard, la | ||
| 86 | visualizaci\u00f3n principal muestra la red vial de Quer\u00e9taro | 94 | visualizaci\u00f3n principal muestra la red vial de Quer\u00e9taro | ||
| 87 | sobre un mapa interactivo, en la cual los usuarios pueden:\n\n* | 95 | sobre un mapa interactivo, en la cual los usuarios pueden:\n\n* | ||
| 88 | Activar o desactivar capas visuales mediante una lista de | 96 | Activar o desactivar capas visuales mediante una lista de | ||
| 89 | selecci\u00f3n.\n* Mostrar marcadores en los tramos con mayor flujo | 97 | selecci\u00f3n.\n* Mostrar marcadores en los tramos con mayor flujo | ||
| 90 | vehicular o en los veh\u00edculos m\u00e1s lentos, seg\u00fan la | 98 | vehicular o en los veh\u00edculos m\u00e1s lentos, seg\u00fan la | ||
| 91 | opci\u00f3n elegida.\n* Ajustar atributos visuales de los tramos (como | 99 | opci\u00f3n elegida.\n* Ajustar atributos visuales de los tramos (como | ||
| 92 | la transparencia y el ancho de las l\u00edneas) en funci\u00f3n del | 100 | la transparencia y el ancho de las l\u00edneas) en funci\u00f3n del | ||
| 93 | n\u00famero de veh\u00edculos, para resaltar las zonas con mayor | 101 | n\u00famero de veh\u00edculos, para resaltar las zonas con mayor | ||
| 94 | congesti\u00f3n.\n* Utilizar un control deslizante temporal para | 102 | congesti\u00f3n.\n* Utilizar un control deslizante temporal para | ||
| 95 | seleccionar y visualizar el estado del tr\u00e1fico en un instante | 103 | seleccionar y visualizar el estado del tr\u00e1fico en un instante | ||
| 96 | espec\u00edfico de la simulaci\u00f3n.\n\nEsta combinaci\u00f3n de | 104 | espec\u00edfico de la simulaci\u00f3n.\n\nEsta combinaci\u00f3n de | ||
| 97 | controles permite analizar din\u00e1micamente el comportamiento del | 105 | controles permite analizar din\u00e1micamente el comportamiento del | ||
| 98 | tr\u00e1fico, identificar cuellos de botella y visualizar su | 106 | tr\u00e1fico, identificar cuellos de botella y visualizar su | ||
| 99 | evoluci\u00f3n temporal.\n\nEl tablero demuestra las capacidades de | 107 | evoluci\u00f3n temporal.\n\nEl tablero demuestra las capacidades de | ||
| 100 | Dash Sylvereye, una biblioteca creada en el Observatorio Metropolitano | 108 | Dash Sylvereye, una biblioteca creada en el Observatorio Metropolitano | ||
| 101 | CentroGeo, capaz de renderizar redes viales a escala urbana con | 109 | CentroGeo, capaz de renderizar redes viales a escala urbana con | ||
| 102 | aceleraci\u00f3n WebGL, y de integrarse de forma nativa con | 110 | aceleraci\u00f3n WebGL, y de integrarse de forma nativa con | ||
| 103 | componentes interactivos de Dash para construir dashboards | 111 | componentes interactivos de Dash para construir dashboards | ||
| 104 | anal\u00edticos completamente en Python.\n\nEn conjunto, la | 112 | anal\u00edticos completamente en Python.\n\nEn conjunto, la | ||
| 105 | simulaci\u00f3n ofrece una herramienta poderosa para el an\u00e1lisis | 113 | simulaci\u00f3n ofrece una herramienta poderosa para el an\u00e1lisis | ||
| 106 | visual de la movilidad urbana, permitiendo explorar patrones de | 114 | visual de la movilidad urbana, permitiendo explorar patrones de | ||
| 107 | tr\u00e1fico y su din\u00e1mica temporal con un enfoque reproducible y | 115 | tr\u00e1fico y su din\u00e1mica temporal con un enfoque reproducible y | ||
| 108 | extensible a otras ciudades.", | 116 | extensible a otras ciudades.", | ||
| 109 | "num_resources": 1, | 117 | "num_resources": 1, | ||
| n | 110 | "num_tags": 26, | n | 118 | "num_tags": 27, |
| 111 | "organization": { | 119 | "organization": { | ||
| 112 | "approval_status": "approved", | 120 | "approval_status": "approved", | ||
| 113 | "created": "2022-05-19T00:10:30.480393", | 121 | "created": "2022-05-19T00:10:30.480393", | ||
| 114 | "description": "Observatorio Metropolitano CentroGeo", | 122 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 115 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 123 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 116 | "image_url": | 124 | "image_url": | ||
| 117 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 125 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 118 | "is_organization": true, | 126 | "is_organization": true, | ||
| 119 | "name": "observatorio-metropolitano-centrogeo", | 127 | "name": "observatorio-metropolitano-centrogeo", | ||
| 120 | "state": "active", | 128 | "state": "active", | ||
| 121 | "title": "Observatorio Metropolitano CentroGeo", | 129 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 122 | "type": "organization" | 130 | "type": "organization" | ||
| 123 | }, | 131 | }, | ||
| 124 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 132 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 125 | "private": false, | 133 | "private": false, | ||
| 126 | "relationships_as_object": [], | 134 | "relationships_as_object": [], | ||
| 127 | "relationships_as_subject": [], | 135 | "relationships_as_subject": [], | ||
| 128 | "resources": [ | 136 | "resources": [ | ||
| 129 | { | 137 | { | ||
| 130 | "cache_last_updated": null, | 138 | "cache_last_updated": null, | ||
| 131 | "cache_url": null, | 139 | "cache_url": null, | ||
| 132 | "created": "2025-10-25T03:36:22.267752", | 140 | "created": "2025-10-25T03:36:22.267752", | ||
| 133 | "datastore_active": false, | 141 | "datastore_active": false, | ||
| 134 | "description": "El tablero \u201cSimulaci\u00f3n SUMO de | 142 | "description": "El tablero \u201cSimulaci\u00f3n SUMO de | ||
| 135 | Tr\u00e1fico Vehicular en el Centro de Quer\u00e9taro\u201d presenta | 143 | Tr\u00e1fico Vehicular en el Centro de Quer\u00e9taro\u201d presenta | ||
| 136 | una visualizaci\u00f3n interactiva desarrollada con el framework Dash, | 144 | una visualizaci\u00f3n interactiva desarrollada con el framework Dash, | ||
| 137 | la cual utiliza la biblioteca Dash Sylvereye para el an\u00e1lisis | 145 | la cual utiliza la biblioteca Dash Sylvereye para el an\u00e1lisis | ||
| 138 | postmortem de una simulaci\u00f3n vehicular realizada sobre la red de | 146 | postmortem de una simulaci\u00f3n vehicular realizada sobre la red de | ||
| 139 | calles del centro de la ciudad de Quer\u00e9taro, M\u00e9xico.\n\nLas | 147 | calles del centro de la ciudad de Quer\u00e9taro, M\u00e9xico.\n\nLas | ||
| 140 | simulaciones fueron generadas con SUMO (Simulation of Urban MObility), | 148 | simulaciones fueron generadas con SUMO (Simulation of Urban MObility), | ||
| 141 | un simulador ampliamente usado en el an\u00e1lisis urbano y de | 149 | un simulador ampliamente usado en el an\u00e1lisis urbano y de | ||
| 142 | transporte, que permite modelar el movimiento de veh\u00edculos a lo | 150 | transporte, que permite modelar el movimiento de veh\u00edculos a lo | ||
| 143 | largo del tiempo en redes urbanas reales.\n\nEn el dashboard, la | 151 | largo del tiempo en redes urbanas reales.\n\nEn el dashboard, la | ||
| 144 | visualizaci\u00f3n principal muestra la red vial de Quer\u00e9taro | 152 | visualizaci\u00f3n principal muestra la red vial de Quer\u00e9taro | ||
| 145 | sobre un mapa interactivo, en la cual los usuarios pueden:\n\n* | 153 | sobre un mapa interactivo, en la cual los usuarios pueden:\n\n* | ||
| 146 | Activar o desactivar capas visuales mediante una lista de | 154 | Activar o desactivar capas visuales mediante una lista de | ||
| 147 | selecci\u00f3n.\n* Mostrar marcadores en los tramos con mayor flujo | 155 | selecci\u00f3n.\n* Mostrar marcadores en los tramos con mayor flujo | ||
| 148 | vehicular o en los veh\u00edculos m\u00e1s lentos, seg\u00fan la | 156 | vehicular o en los veh\u00edculos m\u00e1s lentos, seg\u00fan la | ||
| 149 | opci\u00f3n elegida.\n* Ajustar atributos visuales de los tramos (como | 157 | opci\u00f3n elegida.\n* Ajustar atributos visuales de los tramos (como | ||
| 150 | la transparencia y el ancho de las l\u00edneas) en funci\u00f3n del | 158 | la transparencia y el ancho de las l\u00edneas) en funci\u00f3n del | ||
| 151 | n\u00famero de veh\u00edculos, para resaltar las zonas con mayor | 159 | n\u00famero de veh\u00edculos, para resaltar las zonas con mayor | ||
| 152 | congesti\u00f3n.\n* Utilizar un control deslizante temporal para | 160 | congesti\u00f3n.\n* Utilizar un control deslizante temporal para | ||
| 153 | seleccionar y visualizar el estado del tr\u00e1fico en un instante | 161 | seleccionar y visualizar el estado del tr\u00e1fico en un instante | ||
| 154 | espec\u00edfico de la simulaci\u00f3n.\n\nEsta combinaci\u00f3n de | 162 | espec\u00edfico de la simulaci\u00f3n.\n\nEsta combinaci\u00f3n de | ||
| 155 | controles permite analizar din\u00e1micamente el comportamiento del | 163 | controles permite analizar din\u00e1micamente el comportamiento del | ||
| 156 | tr\u00e1fico, identificar cuellos de botella y visualizar su | 164 | tr\u00e1fico, identificar cuellos de botella y visualizar su | ||
| 157 | evoluci\u00f3n temporal.\n\nEl tablero demuestra las capacidades de | 165 | evoluci\u00f3n temporal.\n\nEl tablero demuestra las capacidades de | ||
| 158 | Dash Sylvereye, una biblioteca creada en el Observatorio Metropolitano | 166 | Dash Sylvereye, una biblioteca creada en el Observatorio Metropolitano | ||
| 159 | CentroGeo, capaz de renderizar redes viales a escala urbana con | 167 | CentroGeo, capaz de renderizar redes viales a escala urbana con | ||
| 160 | aceleraci\u00f3n WebGL, y de integrarse de forma nativa con | 168 | aceleraci\u00f3n WebGL, y de integrarse de forma nativa con | ||
| 161 | componentes interactivos de Dash para construir dashboards | 169 | componentes interactivos de Dash para construir dashboards | ||
| 162 | anal\u00edticos completamente en Python.\n\nEn conjunto, la | 170 | anal\u00edticos completamente en Python.\n\nEn conjunto, la | ||
| 163 | simulaci\u00f3n ofrece una herramienta poderosa para el an\u00e1lisis | 171 | simulaci\u00f3n ofrece una herramienta poderosa para el an\u00e1lisis | ||
| 164 | visual de la movilidad urbana, permitiendo explorar patrones de | 172 | visual de la movilidad urbana, permitiendo explorar patrones de | ||
| 165 | tr\u00e1fico y su din\u00e1mica temporal con un enfoque reproducible y | 173 | tr\u00e1fico y su din\u00e1mica temporal con un enfoque reproducible y | ||
| 166 | extensible a otras ciudades.", | 174 | extensible a otras ciudades.", | ||
| 167 | "format": "HTML", | 175 | "format": "HTML", | ||
| 168 | "hash": "", | 176 | "hash": "", | ||
| 169 | "id": "9e1ccaa6-34d6-40ed-b25f-4cff5840146e", | 177 | "id": "9e1ccaa6-34d6-40ed-b25f-4cff5840146e", | ||
| 170 | "last_modified": null, | 178 | "last_modified": null, | ||
| n | 171 | "metadata_modified": "2025-10-25T03:36:22.195277", | n | 179 | "metadata_modified": "2025-10-30T02:29:03.961317", |
| 172 | "mimetype": null, | 180 | "mimetype": null, | ||
| 173 | "mimetype_inner": null, | 181 | "mimetype_inner": null, | ||
| 174 | "name": "Simulaci\u00f3n SUMO de Tr\u00e1fico Vehicular en el | 182 | "name": "Simulaci\u00f3n SUMO de Tr\u00e1fico Vehicular en el | ||
| 175 | Centro de Quer\u00e9taro", | 183 | Centro de Quer\u00e9taro", | ||
| 176 | "package_id": "b4e93120-fe8b-4147-a331-440177402ab7", | 184 | "package_id": "b4e93120-fe8b-4147-a331-440177402ab7", | ||
| 177 | "position": 0, | 185 | "position": 0, | ||
| 178 | "resource_type": null, | 186 | "resource_type": null, | ||
| 179 | "size": null, | 187 | "size": null, | ||
| 180 | "state": "active", | 188 | "state": "active", | ||
| 181 | "url": | 189 | "url": | ||
| 182 | ualizacion.observatoriogeo.mx/sylvereyesumo/dashboard/sylvereyesumo/", | 190 | ualizacion.observatoriogeo.mx/sylvereyesumo/dashboard/sylvereyesumo/", | ||
| 183 | "url_type": null | 191 | "url_type": null | ||
| 184 | } | 192 | } | ||
| 185 | ], | 193 | ], | ||
| 186 | "state": "active", | 194 | "state": "active", | ||
| 187 | "tags": [ | 195 | "tags": [ | ||
| t | t | 196 | { | ||
| 197 | "display_name": "2022", | ||||
| 198 | "id": "b987b800-5e2d-4806-a176-a95dcbf738d5", | ||||
| 199 | "name": "2022", | ||||
| 200 | "state": "active", | ||||
| 201 | "vocabulary_id": null | ||||
| 202 | }, | ||||
| 188 | { | 203 | { | ||
| 189 | "display_name": "albertogarob", | 204 | "display_name": "albertogarob", | ||
| 190 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | 205 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | ||
| 191 | "name": "albertogarob", | 206 | "name": "albertogarob", | ||
| 192 | "state": "active", | 207 | "state": "active", | ||
| 193 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
| 194 | }, | 209 | }, | ||
| 195 | { | 210 | { | ||
| 196 | "display_name": "analisis-de-movilidad", | 211 | "display_name": "analisis-de-movilidad", | ||
| 197 | "id": "b277d691-952a-4fe9-952a-a53c0ef92e39", | 212 | "id": "b277d691-952a-4fe9-952a-a53c0ef92e39", | ||
| 198 | "name": "analisis-de-movilidad", | 213 | "name": "analisis-de-movilidad", | ||
| 199 | "state": "active", | 214 | "state": "active", | ||
| 200 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
| 201 | }, | 216 | }, | ||
| 202 | { | 217 | { | ||
| 203 | "display_name": "analisis-postmortem", | 218 | "display_name": "analisis-postmortem", | ||
| 204 | "id": "e758a315-ad22-4784-9a76-06a86613bfac", | 219 | "id": "e758a315-ad22-4784-9a76-06a86613bfac", | ||
| 205 | "name": "analisis-postmortem", | 220 | "name": "analisis-postmortem", | ||
| 206 | "state": "active", | 221 | "state": "active", | ||
| 207 | "vocabulary_id": null | 222 | "vocabulary_id": null | ||
| 208 | }, | 223 | }, | ||
| 209 | { | 224 | { | ||
| 210 | "display_name": "analisis-temporal", | 225 | "display_name": "analisis-temporal", | ||
| 211 | "id": "e6500def-d7fc-467d-a002-ad0447691c57", | 226 | "id": "e6500def-d7fc-467d-a002-ad0447691c57", | ||
| 212 | "name": "analisis-temporal", | 227 | "name": "analisis-temporal", | ||
| 213 | "state": "active", | 228 | "state": "active", | ||
| 214 | "vocabulary_id": null | 229 | "vocabulary_id": null | ||
| 215 | }, | 230 | }, | ||
| 216 | { | 231 | { | ||
| 217 | "display_name": "centrogeo", | 232 | "display_name": "centrogeo", | ||
| 218 | "id": "1f0e8926-452a-4e96-8723-2161d56eaddd", | 233 | "id": "1f0e8926-452a-4e96-8723-2161d56eaddd", | ||
| 219 | "name": "centrogeo", | 234 | "name": "centrogeo", | ||
| 220 | "state": "active", | 235 | "state": "active", | ||
| 221 | "vocabulary_id": null | 236 | "vocabulary_id": null | ||
| 222 | }, | 237 | }, | ||
| 223 | { | 238 | { | ||
| 224 | "display_name": "congestion-vial", | 239 | "display_name": "congestion-vial", | ||
| 225 | "id": "5aebed54-3a9c-4a70-a31b-6f85ab79211d", | 240 | "id": "5aebed54-3a9c-4a70-a31b-6f85ab79211d", | ||
| 226 | "name": "congestion-vial", | 241 | "name": "congestion-vial", | ||
| 227 | "state": "active", | 242 | "state": "active", | ||
| 228 | "vocabulary_id": null | 243 | "vocabulary_id": null | ||
| 229 | }, | 244 | }, | ||
| 230 | { | 245 | { | ||
| 231 | "display_name": "cuellos-de-botella", | 246 | "display_name": "cuellos-de-botella", | ||
| 232 | "id": "d77000fe-87e8-4daa-98ad-953b5d4f1d70", | 247 | "id": "d77000fe-87e8-4daa-98ad-953b5d4f1d70", | ||
| 233 | "name": "cuellos-de-botella", | 248 | "name": "cuellos-de-botella", | ||
| 234 | "state": "active", | 249 | "state": "active", | ||
| 235 | "vocabulary_id": null | 250 | "vocabulary_id": null | ||
| 236 | }, | 251 | }, | ||
| 237 | { | 252 | { | ||
| 238 | "display_name": "dash", | 253 | "display_name": "dash", | ||
| 239 | "id": "e41e669d-e3a1-4afc-9363-fb80dce5ae26", | 254 | "id": "e41e669d-e3a1-4afc-9363-fb80dce5ae26", | ||
| 240 | "name": "dash", | 255 | "name": "dash", | ||
| 241 | "state": "active", | 256 | "state": "active", | ||
| 242 | "vocabulary_id": null | 257 | "vocabulary_id": null | ||
| 243 | }, | 258 | }, | ||
| 244 | { | 259 | { | ||
| 245 | "display_name": "dash-sylvereye", | 260 | "display_name": "dash-sylvereye", | ||
| 246 | "id": "bfc898f3-102d-4857-9f1a-4d55d708beca", | 261 | "id": "bfc898f3-102d-4857-9f1a-4d55d708beca", | ||
| 247 | "name": "dash-sylvereye", | 262 | "name": "dash-sylvereye", | ||
| 248 | "state": "active", | 263 | "state": "active", | ||
| 249 | "vocabulary_id": null | 264 | "vocabulary_id": null | ||
| 250 | }, | 265 | }, | ||
| 251 | { | 266 | { | ||
| 252 | "display_name": "datos-urbanos", | 267 | "display_name": "datos-urbanos", | ||
| 253 | "id": "c1156a9b-59a8-49c2-a7e8-79f46dfe2642", | 268 | "id": "c1156a9b-59a8-49c2-a7e8-79f46dfe2642", | ||
| 254 | "name": "datos-urbanos", | 269 | "name": "datos-urbanos", | ||
| 255 | "state": "active", | 270 | "state": "active", | ||
| 256 | "vocabulary_id": null | 271 | "vocabulary_id": null | ||
| 257 | }, | 272 | }, | ||
| 258 | { | 273 | { | ||
| 259 | "display_name": "frameworks-de-visualizacion", | 274 | "display_name": "frameworks-de-visualizacion", | ||
| 260 | "id": "c98bd401-5049-4272-9b85-4cf7b45bdd33", | 275 | "id": "c98bd401-5049-4272-9b85-4cf7b45bdd33", | ||
| 261 | "name": "frameworks-de-visualizacion", | 276 | "name": "frameworks-de-visualizacion", | ||
| 262 | "state": "active", | 277 | "state": "active", | ||
| 263 | "vocabulary_id": null | 278 | "vocabulary_id": null | ||
| 264 | }, | 279 | }, | ||
| 265 | { | 280 | { | ||
| 266 | "display_name": "movilidad-urbana", | 281 | "display_name": "movilidad-urbana", | ||
| 267 | "id": "3587f36b-4788-4a7e-bc95-2f8148421454", | 282 | "id": "3587f36b-4788-4a7e-bc95-2f8148421454", | ||
| 268 | "name": "movilidad-urbana", | 283 | "name": "movilidad-urbana", | ||
| 269 | "state": "active", | 284 | "state": "active", | ||
| 270 | "vocabulary_id": null | 285 | "vocabulary_id": null | ||
| 271 | }, | 286 | }, | ||
| 272 | { | 287 | { | ||
| 273 | "display_name": "observatorio-metropolitano", | 288 | "display_name": "observatorio-metropolitano", | ||
| 274 | "id": "c3a142dd-ecb6-4698-b5a1-01913558a524", | 289 | "id": "c3a142dd-ecb6-4698-b5a1-01913558a524", | ||
| 275 | "name": "observatorio-metropolitano", | 290 | "name": "observatorio-metropolitano", | ||
| 276 | "state": "active", | 291 | "state": "active", | ||
| 277 | "vocabulary_id": null | 292 | "vocabulary_id": null | ||
| 278 | }, | 293 | }, | ||
| 279 | { | 294 | { | ||
| 280 | "display_name": "python", | 295 | "display_name": "python", | ||
| 281 | "id": "ea0c471b-9b13-4dd3-8381-aed24f2f855c", | 296 | "id": "ea0c471b-9b13-4dd3-8381-aed24f2f855c", | ||
| 282 | "name": "python", | 297 | "name": "python", | ||
| 283 | "state": "active", | 298 | "state": "active", | ||
| 284 | "vocabulary_id": null | 299 | "vocabulary_id": null | ||
| 285 | }, | 300 | }, | ||
| 286 | { | 301 | { | ||
| 287 | "display_name": "queretaro", | 302 | "display_name": "queretaro", | ||
| 288 | "id": "8b0a7865-6ede-462a-a978-a766fa428786", | 303 | "id": "8b0a7865-6ede-462a-a978-a766fa428786", | ||
| 289 | "name": "queretaro", | 304 | "name": "queretaro", | ||
| 290 | "state": "active", | 305 | "state": "active", | ||
| 291 | "vocabulary_id": null | 306 | "vocabulary_id": null | ||
| 292 | }, | 307 | }, | ||
| 293 | { | 308 | { | ||
| 294 | "display_name": "red-vial", | 309 | "display_name": "red-vial", | ||
| 295 | "id": "cb6f596d-cb1a-46d6-9f8b-b0904a3352cc", | 310 | "id": "cb6f596d-cb1a-46d6-9f8b-b0904a3352cc", | ||
| 296 | "name": "red-vial", | 311 | "name": "red-vial", | ||
| 297 | "state": "active", | 312 | "state": "active", | ||
| 298 | "vocabulary_id": null | 313 | "vocabulary_id": null | ||
| 299 | }, | 314 | }, | ||
| 300 | { | 315 | { | ||
| 301 | "display_name": "redes-de-calles", | 316 | "display_name": "redes-de-calles", | ||
| 302 | "id": "ec3fa987-5efd-4f4d-a2ee-ca193d274eed", | 317 | "id": "ec3fa987-5efd-4f4d-a2ee-ca193d274eed", | ||
| 303 | "name": "redes-de-calles", | 318 | "name": "redes-de-calles", | ||
| 304 | "state": "active", | 319 | "state": "active", | ||
| 305 | "vocabulary_id": null | 320 | "vocabulary_id": null | ||
| 306 | }, | 321 | }, | ||
| 307 | { | 322 | { | ||
| 308 | "display_name": "simulacion-computacional", | 323 | "display_name": "simulacion-computacional", | ||
| 309 | "id": "80b2002e-6d88-4e28-8061-d28e55a67f54", | 324 | "id": "80b2002e-6d88-4e28-8061-d28e55a67f54", | ||
| 310 | "name": "simulacion-computacional", | 325 | "name": "simulacion-computacional", | ||
| 311 | "state": "active", | 326 | "state": "active", | ||
| 312 | "vocabulary_id": null | 327 | "vocabulary_id": null | ||
| 313 | }, | 328 | }, | ||
| 314 | { | 329 | { | ||
| 315 | "display_name": "simulacion-de-trafico", | 330 | "display_name": "simulacion-de-trafico", | ||
| 316 | "id": "7a39f84d-7f97-4c22-abf3-a3fee6a641bb", | 331 | "id": "7a39f84d-7f97-4c22-abf3-a3fee6a641bb", | ||
| 317 | "name": "simulacion-de-trafico", | 332 | "name": "simulacion-de-trafico", | ||
| 318 | "state": "active", | 333 | "state": "active", | ||
| 319 | "vocabulary_id": null | 334 | "vocabulary_id": null | ||
| 320 | }, | 335 | }, | ||
| 321 | { | 336 | { | ||
| 322 | "display_name": "simulacion-urbana", | 337 | "display_name": "simulacion-urbana", | ||
| 323 | "id": "995852e8-c993-429c-bdda-31dd13d18747", | 338 | "id": "995852e8-c993-429c-bdda-31dd13d18747", | ||
| 324 | "name": "simulacion-urbana", | 339 | "name": "simulacion-urbana", | ||
| 325 | "state": "active", | 340 | "state": "active", | ||
| 326 | "vocabulary_id": null | 341 | "vocabulary_id": null | ||
| 327 | }, | 342 | }, | ||
| 328 | { | 343 | { | ||
| 329 | "display_name": "sumo", | 344 | "display_name": "sumo", | ||
| 330 | "id": "266e4bda-ee60-47fb-8b86-e7d96400e827", | 345 | "id": "266e4bda-ee60-47fb-8b86-e7d96400e827", | ||
| 331 | "name": "sumo", | 346 | "name": "sumo", | ||
| 332 | "state": "active", | 347 | "state": "active", | ||
| 333 | "vocabulary_id": null | 348 | "vocabulary_id": null | ||
| 334 | }, | 349 | }, | ||
| 335 | { | 350 | { | ||
| 336 | "display_name": "trafico-vehicular", | 351 | "display_name": "trafico-vehicular", | ||
| 337 | "id": "f5618c32-be7f-4a27-aed8-18dc33db87df", | 352 | "id": "f5618c32-be7f-4a27-aed8-18dc33db87df", | ||
| 338 | "name": "trafico-vehicular", | 353 | "name": "trafico-vehicular", | ||
| 339 | "state": "active", | 354 | "state": "active", | ||
| 340 | "vocabulary_id": null | 355 | "vocabulary_id": null | ||
| 341 | }, | 356 | }, | ||
| 342 | { | 357 | { | ||
| 343 | "display_name": "transporte-urbano", | 358 | "display_name": "transporte-urbano", | ||
| 344 | "id": "7eca4c53-c436-4b41-be1f-4a5a1628a4fa", | 359 | "id": "7eca4c53-c436-4b41-be1f-4a5a1628a4fa", | ||
| 345 | "name": "transporte-urbano", | 360 | "name": "transporte-urbano", | ||
| 346 | "state": "active", | 361 | "state": "active", | ||
| 347 | "vocabulary_id": null | 362 | "vocabulary_id": null | ||
| 348 | }, | 363 | }, | ||
| 349 | { | 364 | { | ||
| 350 | "display_name": "visualizacion-de-datos", | 365 | "display_name": "visualizacion-de-datos", | ||
| 351 | "id": "8cfefa81-ab60-4188-b38b-09135f8bb70c", | 366 | "id": "8cfefa81-ab60-4188-b38b-09135f8bb70c", | ||
| 352 | "name": "visualizacion-de-datos", | 367 | "name": "visualizacion-de-datos", | ||
| 353 | "state": "active", | 368 | "state": "active", | ||
| 354 | "vocabulary_id": null | 369 | "vocabulary_id": null | ||
| 355 | }, | 370 | }, | ||
| 356 | { | 371 | { | ||
| 357 | "display_name": "visualizacion-geoespacial", | 372 | "display_name": "visualizacion-geoespacial", | ||
| 358 | "id": "2c03b847-6dbc-42f1-b2d0-e4666627ed2e", | 373 | "id": "2c03b847-6dbc-42f1-b2d0-e4666627ed2e", | ||
| 359 | "name": "visualizacion-geoespacial", | 374 | "name": "visualizacion-geoespacial", | ||
| 360 | "state": "active", | 375 | "state": "active", | ||
| 361 | "vocabulary_id": null | 376 | "vocabulary_id": null | ||
| 362 | }, | 377 | }, | ||
| 363 | { | 378 | { | ||
| 364 | "display_name": "webgl", | 379 | "display_name": "webgl", | ||
| 365 | "id": "667ddd0e-012d-417d-9e85-f8695fac9d29", | 380 | "id": "667ddd0e-012d-417d-9e85-f8695fac9d29", | ||
| 366 | "name": "webgl", | 381 | "name": "webgl", | ||
| 367 | "state": "active", | 382 | "state": "active", | ||
| 368 | "vocabulary_id": null | 383 | "vocabulary_id": null | ||
| 369 | } | 384 | } | ||
| 370 | ], | 385 | ], | ||
| 371 | "title": "Simulaci\u00f3n SUMO de Tr\u00e1fico Vehicular en el | 386 | "title": "Simulaci\u00f3n SUMO de Tr\u00e1fico Vehicular en el | ||
| 372 | Centro de Quer\u00e9taro", | 387 | Centro de Quer\u00e9taro", | ||
| 373 | "type": "dataset", | 388 | "type": "dataset", | ||
| 374 | "url": | 389 | "url": | ||
| 375 | ualizacion.observatoriogeo.mx/sylvereyesumo/dashboard/sylvereyesumo/", | 390 | ualizacion.observatoriogeo.mx/sylvereyesumo/dashboard/sylvereyesumo/", | ||
| 376 | "version": null | 391 | "version": null | ||
| 377 | } | 392 | } |
