Cambios
En el instante 24 de octubre de 2025, 0:46:52 UTC,
-
Añadido recurso Predicción de COVID-19 en Hubei, China: optimización de modelos de contagio con Recocido Simulado a Predicción de COVID-19 en Hubei, China: optimización de modelos de contagio con Recocido Simulado
| f | 1 | { | f | 1 | { |
| 2 | "author": "Teun Hoven, Alberto Garc\u00eda Robledo, Mahboobeh | 2 | "author": "Teun Hoven, Alberto Garc\u00eda Robledo, Mahboobeh | ||
| 3 | Zangiabady", | 3 | Zangiabady", | ||
| 4 | "author_email": null, | 4 | "author_email": null, | ||
| 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 5 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 6 | "extras": [ | 6 | "extras": [ | ||
| 7 | { | 7 | { | ||
| 8 | "key": "Identificador hash", | 8 | "key": "Identificador hash", | ||
| 9 | "value": "55235c78d83e" | 9 | "value": "55235c78d83e" | ||
| 10 | }, | 10 | }, | ||
| 11 | { | 11 | { | ||
| 12 | "key": "Instituciones", | 12 | "key": "Instituciones", | ||
| 13 | "value": "SECIHTI-CentroGeo, University of Twente" | 13 | "value": "SECIHTI-CentroGeo, University of Twente" | ||
| 14 | }, | 14 | }, | ||
| 15 | { | 15 | { | ||
| 16 | "key": "Subt\u00edtulo", | 16 | "key": "Subt\u00edtulo", | ||
| 17 | "value": "Una mejora al algoritmo NIPA con datos del brote en | 17 | "value": "Una mejora al algoritmo NIPA con datos del brote en | ||
| 18 | contextos metropolitanos" | 18 | contextos metropolitanos" | ||
| 19 | }, | 19 | }, | ||
| 20 | { | 20 | { | ||
| 21 | "key": "Tipo", | 21 | "key": "Tipo", | ||
| 22 | "value": "Art\u00edculo en l\u00ednea" | 22 | "value": "Art\u00edculo en l\u00ednea" | ||
| 23 | }, | 23 | }, | ||
| 24 | { | 24 | { | ||
| 25 | "key": "URL", | 25 | "key": "URL", | ||
| 26 | "value": | 26 | "value": | ||
| 27 | opolitanos-optimizacion-de-modelos-de-contagio-con-recocido-simulado/" | 27 | opolitanos-optimizacion-de-modelos-de-contagio-con-recocido-simulado/" | ||
| 28 | } | 28 | } | ||
| 29 | ], | 29 | ], | ||
| 30 | "groups": [ | 30 | "groups": [ | ||
| 31 | { | 31 | { | ||
| 32 | "description": "", | 32 | "description": "", | ||
| 33 | "display_name": "Art\u00edculos en l\u00ednea", | 33 | "display_name": "Art\u00edculos en l\u00ednea", | ||
| 34 | "id": "8659310a-f66e-46e8-b1e5-3d7e04acd171", | 34 | "id": "8659310a-f66e-46e8-b1e5-3d7e04acd171", | ||
| 35 | "image_display_url": "", | 35 | "image_display_url": "", | ||
| 36 | "name": "articulos-en-linea", | 36 | "name": "articulos-en-linea", | ||
| 37 | "title": "Art\u00edculos en l\u00ednea" | 37 | "title": "Art\u00edculos en l\u00ednea" | ||
| 38 | } | 38 | } | ||
| 39 | ], | 39 | ], | ||
| 40 | "id": "caefb78c-fcb1-41f6-84ee-71bf984cba27", | 40 | "id": "caefb78c-fcb1-41f6-84ee-71bf984cba27", | ||
| 41 | "isopen": false, | 41 | "isopen": false, | ||
| 42 | "license_id": null, | 42 | "license_id": null, | ||
| 43 | "license_title": null, | 43 | "license_title": null, | ||
| 44 | "maintainer": null, | 44 | "maintainer": null, | ||
| 45 | "maintainer_email": null, | 45 | "maintainer_email": null, | ||
| 46 | "metadata_created": "2025-10-24T00:46:52.021148", | 46 | "metadata_created": "2025-10-24T00:46:52.021148", | ||
| n | 47 | "metadata_modified": "2025-10-24T00:46:52.021158", | n | 47 | "metadata_modified": "2025-10-24T00:46:52.591665", |
| 48 | "name": "55235c78d83e", | 48 | "name": "55235c78d83e", | ||
| 49 | "notes": "En este estudio se propone una mejora al algoritmo de | 49 | "notes": "En este estudio se propone una mejora al algoritmo de | ||
| 50 | predicci\u00f3n NIPA (Network Inference-based Prediction Algorithm), | 50 | predicci\u00f3n NIPA (Network Inference-based Prediction Algorithm), | ||
| 51 | que se basa en modelos epid\u00e9micos de tipo SIR e inferencia de | 51 | que se basa en modelos epid\u00e9micos de tipo SIR e inferencia de | ||
| 52 | redes, mediante la aplicaci\u00f3n del algoritmo de Recocido Simulado | 52 | redes, mediante la aplicaci\u00f3n del algoritmo de Recocido Simulado | ||
| 53 | para optimizar par\u00e1metros cr\u00edticos. Esta optimizaci\u00f3n | 53 | para optimizar par\u00e1metros cr\u00edticos. Esta optimizaci\u00f3n | ||
| 54 | permite mejorar la predicci\u00f3n de la evoluci\u00f3n temporal de | 54 | permite mejorar la predicci\u00f3n de la evoluci\u00f3n temporal de | ||
| 55 | enfermedades infecciosas como el COVID-19, especialmente en regiones | 55 | enfermedades infecciosas como el COVID-19, especialmente en regiones | ||
| 56 | densamente pobladas. La validaci\u00f3n se realiz\u00f3 utilizando | 56 | densamente pobladas. La validaci\u00f3n se realiz\u00f3 utilizando | ||
| 57 | datos del brote de COVID-19 en la provincia china de Hubei entre el 21 | 57 | datos del brote de COVID-19 en la provincia china de Hubei entre el 21 | ||
| 58 | de enero y el 14 de febrero de 2020. Los resultados muestran que el | 58 | de enero y el 14 de febrero de 2020. Los resultados muestran que el | ||
| 59 | uso de Recocido Simulado mejora la precisi\u00f3n predictiva respecto | 59 | uso de Recocido Simulado mejora la precisi\u00f3n predictiva respecto | ||
| 60 | a t\u00e9cnicas tradicionales como la validaci\u00f3n cruzada, lo que | 60 | a t\u00e9cnicas tradicionales como la validaci\u00f3n cruzada, lo que | ||
| 61 | representa una contribuci\u00f3n relevante para la modelaci\u00f3n y | 61 | representa una contribuci\u00f3n relevante para la modelaci\u00f3n y | ||
| 62 | gesti\u00f3n de crisis sanitarias en entornos metropolitanos.", | 62 | gesti\u00f3n de crisis sanitarias en entornos metropolitanos.", | ||
| n | 63 | "num_resources": 0, | n | 63 | "num_resources": 1, |
| 64 | "num_tags": 30, | 64 | "num_tags": 30, | ||
| 65 | "organization": { | 65 | "organization": { | ||
| 66 | "approval_status": "approved", | 66 | "approval_status": "approved", | ||
| 67 | "created": "2022-05-19T00:10:30.480393", | 67 | "created": "2022-05-19T00:10:30.480393", | ||
| 68 | "description": "Observatorio Metropolitano CentroGeo", | 68 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 69 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 69 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 70 | "image_url": | 70 | "image_url": | ||
| 71 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 71 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 72 | "is_organization": true, | 72 | "is_organization": true, | ||
| 73 | "name": "observatorio-metropolitano-centrogeo", | 73 | "name": "observatorio-metropolitano-centrogeo", | ||
| 74 | "state": "active", | 74 | "state": "active", | ||
| 75 | "title": "Observatorio Metropolitano CentroGeo", | 75 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 76 | "type": "organization" | 76 | "type": "organization" | ||
| 77 | }, | 77 | }, | ||
| 78 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 78 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 79 | "private": false, | 79 | "private": false, | ||
| 80 | "relationships_as_object": [], | 80 | "relationships_as_object": [], | ||
| 81 | "relationships_as_subject": [], | 81 | "relationships_as_subject": [], | ||
| t | 82 | "resources": [], | t | 82 | "resources": [ |
| 83 | { | ||||
| 84 | "cache_last_updated": null, | ||||
| 85 | "cache_url": null, | ||||
| 86 | "created": "2025-10-24T00:46:52.657895", | ||||
| 87 | "datastore_active": false, | ||||
| 88 | "description": "En este estudio se propone una mejora al | ||||
| 89 | algoritmo de predicci\u00f3n NIPA (Network Inference-based Prediction | ||||
| 90 | Algorithm), que se basa en modelos epid\u00e9micos de tipo SIR e | ||||
| 91 | inferencia de redes, mediante la aplicaci\u00f3n del algoritmo de | ||||
| 92 | Recocido Simulado para optimizar par\u00e1metros cr\u00edticos. Esta | ||||
| 93 | optimizaci\u00f3n permite mejorar la predicci\u00f3n de la | ||||
| 94 | evoluci\u00f3n temporal de enfermedades infecciosas como el COVID-19, | ||||
| 95 | especialmente en regiones densamente pobladas. La validaci\u00f3n se | ||||
| 96 | realiz\u00f3 utilizando datos del brote de COVID-19 en la provincia | ||||
| 97 | china de Hubei entre el 21 de enero y el 14 de febrero de 2020. Los | ||||
| 98 | resultados muestran que el uso de Recocido Simulado mejora la | ||||
| 99 | precisi\u00f3n predictiva respecto a t\u00e9cnicas tradicionales como | ||||
| 100 | la validaci\u00f3n cruzada, lo que representa una contribuci\u00f3n | ||||
| 101 | relevante para la modelaci\u00f3n y gesti\u00f3n de crisis sanitarias | ||||
| 102 | en entornos metropolitanos.", | ||||
| 103 | "format": "HTML", | ||||
| 104 | "hash": "", | ||||
| 105 | "id": "84ddb3a3-b4a9-4880-af60-4a961029d9f3", | ||||
| 106 | "last_modified": null, | ||||
| 107 | "metadata_modified": "2025-10-24T00:46:52.595848", | ||||
| 108 | "mimetype": null, | ||||
| 109 | "mimetype_inner": null, | ||||
| 110 | "name": "Predicci\u00f3n de COVID-19 en Hubei, China: | ||||
| 111 | optimizaci\u00f3n de modelos de contagio con Recocido Simulado", | ||||
| 112 | "package_id": "caefb78c-fcb1-41f6-84ee-71bf984cba27", | ||||
| 113 | "position": 0, | ||||
| 114 | "resource_type": null, | ||||
| 115 | "size": null, | ||||
| 116 | "state": "active", | ||||
| 117 | "url": | ||||
| 118 | politanos-optimizacion-de-modelos-de-contagio-con-recocido-simulado/", | ||||
| 119 | "url_type": null | ||||
| 120 | } | ||||
| 121 | ], | ||||
| 83 | "state": "active", | 122 | "state": "active", | ||
| 84 | "tags": [ | 123 | "tags": [ | ||
| 85 | { | 124 | { | ||
| 86 | "display_name": "albertogarob", | 125 | "display_name": "albertogarob", | ||
| 87 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | 126 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | ||
| 88 | "name": "albertogarob", | 127 | "name": "albertogarob", | ||
| 89 | "state": "active", | 128 | "state": "active", | ||
| 90 | "vocabulary_id": null | 129 | "vocabulary_id": null | ||
| 91 | }, | 130 | }, | ||
| 92 | { | 131 | { | ||
| 93 | "display_name": "anlisis-de-redes", | 132 | "display_name": "anlisis-de-redes", | ||
| 94 | "id": "48581b19-42f9-4824-8945-3124917c6378", | 133 | "id": "48581b19-42f9-4824-8945-3124917c6378", | ||
| 95 | "name": "anlisis-de-redes", | 134 | "name": "anlisis-de-redes", | ||
| 96 | "state": "active", | 135 | "state": "active", | ||
| 97 | "vocabulary_id": null | 136 | "vocabulary_id": null | ||
| 98 | }, | 137 | }, | ||
| 99 | { | 138 | { | ||
| 100 | "display_name": "anlisis-metropolitano", | 139 | "display_name": "anlisis-metropolitano", | ||
| 101 | "id": "de441173-8497-40ea-8902-e8afe7253e01", | 140 | "id": "de441173-8497-40ea-8902-e8afe7253e01", | ||
| 102 | "name": "anlisis-metropolitano", | 141 | "name": "anlisis-metropolitano", | ||
| 103 | "state": "active", | 142 | "state": "active", | ||
| 104 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
| 105 | }, | 144 | }, | ||
| 106 | { | 145 | { | ||
| 107 | "display_name": "aprendizaje-automtico", | 146 | "display_name": "aprendizaje-automtico", | ||
| 108 | "id": "afa7293e-8d57-46ae-b963-5b051eaea287", | 147 | "id": "afa7293e-8d57-46ae-b963-5b051eaea287", | ||
| 109 | "name": "aprendizaje-automtico", | 148 | "name": "aprendizaje-automtico", | ||
| 110 | "state": "active", | 149 | "state": "active", | ||
| 111 | "vocabulary_id": null | 150 | "vocabulary_id": null | ||
| 112 | }, | 151 | }, | ||
| 113 | { | 152 | { | ||
| 114 | "display_name": "calibracin-de-modelos", | 153 | "display_name": "calibracin-de-modelos", | ||
| 115 | "id": "721b3970-8e40-430e-b1a7-c528903fb2e7", | 154 | "id": "721b3970-8e40-430e-b1a7-c528903fb2e7", | ||
| 116 | "name": "calibracin-de-modelos", | 155 | "name": "calibracin-de-modelos", | ||
| 117 | "state": "active", | 156 | "state": "active", | ||
| 118 | "vocabulary_id": null | 157 | "vocabulary_id": null | ||
| 119 | }, | 158 | }, | ||
| 120 | { | 159 | { | ||
| 121 | "display_name": "ciudades-densas", | 160 | "display_name": "ciudades-densas", | ||
| 122 | "id": "e8bf6b70-a644-4810-bd72-a78d34ba1fd6", | 161 | "id": "e8bf6b70-a644-4810-bd72-a78d34ba1fd6", | ||
| 123 | "name": "ciudades-densas", | 162 | "name": "ciudades-densas", | ||
| 124 | "state": "active", | 163 | "state": "active", | ||
| 125 | "vocabulary_id": null | 164 | "vocabulary_id": null | ||
| 126 | }, | 165 | }, | ||
| 127 | { | 166 | { | ||
| 128 | "display_name": "contextos-metropolitanos", | 167 | "display_name": "contextos-metropolitanos", | ||
| 129 | "id": "2b258adb-9e7b-4d24-9f9b-410c90316eef", | 168 | "id": "2b258adb-9e7b-4d24-9f9b-410c90316eef", | ||
| 130 | "name": "contextos-metropolitanos", | 169 | "name": "contextos-metropolitanos", | ||
| 131 | "state": "active", | 170 | "state": "active", | ||
| 132 | "vocabulary_id": null | 171 | "vocabulary_id": null | ||
| 133 | }, | 172 | }, | ||
| 134 | { | 173 | { | ||
| 135 | "display_name": "covid-19", | 174 | "display_name": "covid-19", | ||
| 136 | "id": "ca4454a3-e5bb-406c-9396-1d5c50ad6b88", | 175 | "id": "ca4454a3-e5bb-406c-9396-1d5c50ad6b88", | ||
| 137 | "name": "covid-19", | 176 | "name": "covid-19", | ||
| 138 | "state": "active", | 177 | "state": "active", | ||
| 139 | "vocabulary_id": null | 178 | "vocabulary_id": null | ||
| 140 | }, | 179 | }, | ||
| 141 | { | 180 | { | ||
| 142 | "display_name": "datos-epidemiolgicos", | 181 | "display_name": "datos-epidemiolgicos", | ||
| 143 | "id": "9c4ee5a6-3e97-4ae7-84ad-e44e2e9b10a1", | 182 | "id": "9c4ee5a6-3e97-4ae7-84ad-e44e2e9b10a1", | ||
| 144 | "name": "datos-epidemiolgicos", | 183 | "name": "datos-epidemiolgicos", | ||
| 145 | "state": "active", | 184 | "state": "active", | ||
| 146 | "vocabulary_id": null | 185 | "vocabulary_id": null | ||
| 147 | }, | 186 | }, | ||
| 148 | { | 187 | { | ||
| 149 | "display_name": "densidad-poblacional", | 188 | "display_name": "densidad-poblacional", | ||
| 150 | "id": "c0052385-ba68-4677-87c8-8485afa947c7", | 189 | "id": "c0052385-ba68-4677-87c8-8485afa947c7", | ||
| 151 | "name": "densidad-poblacional", | 190 | "name": "densidad-poblacional", | ||
| 152 | "state": "active", | 191 | "state": "active", | ||
| 153 | "vocabulary_id": null | 192 | "vocabulary_id": null | ||
| 154 | }, | 193 | }, | ||
| 155 | { | 194 | { | ||
| 156 | "display_name": "gestin-sanitaria", | 195 | "display_name": "gestin-sanitaria", | ||
| 157 | "id": "8c5d8ae4-25e6-443b-bc1a-8f0df08c4321", | 196 | "id": "8c5d8ae4-25e6-443b-bc1a-8f0df08c4321", | ||
| 158 | "name": "gestin-sanitaria", | 197 | "name": "gestin-sanitaria", | ||
| 159 | "state": "active", | 198 | "state": "active", | ||
| 160 | "vocabulary_id": null | 199 | "vocabulary_id": null | ||
| 161 | }, | 200 | }, | ||
| 162 | { | 201 | { | ||
| 163 | "display_name": "hubei", | 202 | "display_name": "hubei", | ||
| 164 | "id": "c88fb87d-5f36-446e-ad03-64a5abb28d98", | 203 | "id": "c88fb87d-5f36-446e-ad03-64a5abb28d98", | ||
| 165 | "name": "hubei", | 204 | "name": "hubei", | ||
| 166 | "state": "active", | 205 | "state": "active", | ||
| 167 | "vocabulary_id": null | 206 | "vocabulary_id": null | ||
| 168 | }, | 207 | }, | ||
| 169 | { | 208 | { | ||
| 170 | "display_name": "inferencia-de-redes", | 209 | "display_name": "inferencia-de-redes", | ||
| 171 | "id": "27816086-b4dc-4e1d-bfc8-62b50df8b0e9", | 210 | "id": "27816086-b4dc-4e1d-bfc8-62b50df8b0e9", | ||
| 172 | "name": "inferencia-de-redes", | 211 | "name": "inferencia-de-redes", | ||
| 173 | "state": "active", | 212 | "state": "active", | ||
| 174 | "vocabulary_id": null | 213 | "vocabulary_id": null | ||
| 175 | }, | 214 | }, | ||
| 176 | { | 215 | { | ||
| 177 | "display_name": "inteligencia-artificial", | 216 | "display_name": "inteligencia-artificial", | ||
| 178 | "id": "77af2445-0e8a-40c2-bb38-f28434e2257b", | 217 | "id": "77af2445-0e8a-40c2-bb38-f28434e2257b", | ||
| 179 | "name": "inteligencia-artificial", | 218 | "name": "inteligencia-artificial", | ||
| 180 | "state": "active", | 219 | "state": "active", | ||
| 181 | "vocabulary_id": null | 220 | "vocabulary_id": null | ||
| 182 | }, | 221 | }, | ||
| 183 | { | 222 | { | ||
| 184 | "display_name": "metaheursticas", | 223 | "display_name": "metaheursticas", | ||
| 185 | "id": "8d696050-d5ff-49a1-b5e9-9c8b4ca4ee4d", | 224 | "id": "8d696050-d5ff-49a1-b5e9-9c8b4ca4ee4d", | ||
| 186 | "name": "metaheursticas", | 225 | "name": "metaheursticas", | ||
| 187 | "state": "active", | 226 | "state": "active", | ||
| 188 | "vocabulary_id": null | 227 | "vocabulary_id": null | ||
| 189 | }, | 228 | }, | ||
| 190 | { | 229 | { | ||
| 191 | "display_name": "modelado-computacional", | 230 | "display_name": "modelado-computacional", | ||
| 192 | "id": "38d761c6-f7e8-47c5-a32d-3d4791002aa6", | 231 | "id": "38d761c6-f7e8-47c5-a32d-3d4791002aa6", | ||
| 193 | "name": "modelado-computacional", | 232 | "name": "modelado-computacional", | ||
| 194 | "state": "active", | 233 | "state": "active", | ||
| 195 | "vocabulary_id": null | 234 | "vocabulary_id": null | ||
| 196 | }, | 235 | }, | ||
| 197 | { | 236 | { | ||
| 198 | "display_name": "modelo-nipa", | 237 | "display_name": "modelo-nipa", | ||
| 199 | "id": "c3082a50-aa4e-4068-95e7-3df48306a08d", | 238 | "id": "c3082a50-aa4e-4068-95e7-3df48306a08d", | ||
| 200 | "name": "modelo-nipa", | 239 | "name": "modelo-nipa", | ||
| 201 | "state": "active", | 240 | "state": "active", | ||
| 202 | "vocabulary_id": null | 241 | "vocabulary_id": null | ||
| 203 | }, | 242 | }, | ||
| 204 | { | 243 | { | ||
| 205 | "display_name": "modelo-sir", | 244 | "display_name": "modelo-sir", | ||
| 206 | "id": "6fe8a509-56f7-427f-91f3-558703237e22", | 245 | "id": "6fe8a509-56f7-427f-91f3-558703237e22", | ||
| 207 | "name": "modelo-sir", | 246 | "name": "modelo-sir", | ||
| 208 | "state": "active", | 247 | "state": "active", | ||
| 209 | "vocabulary_id": null | 248 | "vocabulary_id": null | ||
| 210 | }, | 249 | }, | ||
| 211 | { | 250 | { | ||
| 212 | "display_name": "movilidad-urbana", | 251 | "display_name": "movilidad-urbana", | ||
| 213 | "id": "3587f36b-4788-4a7e-bc95-2f8148421454", | 252 | "id": "3587f36b-4788-4a7e-bc95-2f8148421454", | ||
| 214 | "name": "movilidad-urbana", | 253 | "name": "movilidad-urbana", | ||
| 215 | "state": "active", | 254 | "state": "active", | ||
| 216 | "vocabulary_id": null | 255 | "vocabulary_id": null | ||
| 217 | }, | 256 | }, | ||
| 218 | { | 257 | { | ||
| 219 | "display_name": "optimizacin-de-parmetros", | 258 | "display_name": "optimizacin-de-parmetros", | ||
| 220 | "id": "faa150c5-be85-450d-ba9f-05d6e0fa8203", | 259 | "id": "faa150c5-be85-450d-ba9f-05d6e0fa8203", | ||
| 221 | "name": "optimizacin-de-parmetros", | 260 | "name": "optimizacin-de-parmetros", | ||
| 222 | "state": "active", | 261 | "state": "active", | ||
| 223 | "vocabulary_id": null | 262 | "vocabulary_id": null | ||
| 224 | }, | 263 | }, | ||
| 225 | { | 264 | { | ||
| 226 | "display_name": "pandemia", | 265 | "display_name": "pandemia", | ||
| 227 | "id": "1ce39a9e-a00c-4889-b532-d9a953283e38", | 266 | "id": "1ce39a9e-a00c-4889-b532-d9a953283e38", | ||
| 228 | "name": "pandemia", | 267 | "name": "pandemia", | ||
| 229 | "state": "active", | 268 | "state": "active", | ||
| 230 | "vocabulary_id": null | 269 | "vocabulary_id": null | ||
| 231 | }, | 270 | }, | ||
| 232 | { | 271 | { | ||
| 233 | "display_name": "polticas-pblicas", | 272 | "display_name": "polticas-pblicas", | ||
| 234 | "id": "86c30bca-634d-4cf6-b8a8-ae67bc696f36", | 273 | "id": "86c30bca-634d-4cf6-b8a8-ae67bc696f36", | ||
| 235 | "name": "polticas-pblicas", | 274 | "name": "polticas-pblicas", | ||
| 236 | "state": "active", | 275 | "state": "active", | ||
| 237 | "vocabulary_id": null | 276 | "vocabulary_id": null | ||
| 238 | }, | 277 | }, | ||
| 239 | { | 278 | { | ||
| 240 | "display_name": "prediccin-de-brotes", | 279 | "display_name": "prediccin-de-brotes", | ||
| 241 | "id": "3ed829b2-7f3e-40ab-9d61-341178ae0deb", | 280 | "id": "3ed829b2-7f3e-40ab-9d61-341178ae0deb", | ||
| 242 | "name": "prediccin-de-brotes", | 281 | "name": "prediccin-de-brotes", | ||
| 243 | "state": "active", | 282 | "state": "active", | ||
| 244 | "vocabulary_id": null | 283 | "vocabulary_id": null | ||
| 245 | }, | 284 | }, | ||
| 246 | { | 285 | { | ||
| 247 | "display_name": "prediccin-epidmica", | 286 | "display_name": "prediccin-epidmica", | ||
| 248 | "id": "5749055c-7857-4db6-83dd-808f256f9e78", | 287 | "id": "5749055c-7857-4db6-83dd-808f256f9e78", | ||
| 249 | "name": "prediccin-epidmica", | 288 | "name": "prediccin-epidmica", | ||
| 250 | "state": "active", | 289 | "state": "active", | ||
| 251 | "vocabulary_id": null | 290 | "vocabulary_id": null | ||
| 252 | }, | 291 | }, | ||
| 253 | { | 292 | { | ||
| 254 | "display_name": "propagacin-de-enfermedades", | 293 | "display_name": "propagacin-de-enfermedades", | ||
| 255 | "id": "4af2cbde-456a-42db-a4ad-5def8b2e4c48", | 294 | "id": "4af2cbde-456a-42db-a4ad-5def8b2e4c48", | ||
| 256 | "name": "propagacin-de-enfermedades", | 295 | "name": "propagacin-de-enfermedades", | ||
| 257 | "state": "active", | 296 | "state": "active", | ||
| 258 | "vocabulary_id": null | 297 | "vocabulary_id": null | ||
| 259 | }, | 298 | }, | ||
| 260 | { | 299 | { | ||
| 261 | "display_name": "recocido-simulado", | 300 | "display_name": "recocido-simulado", | ||
| 262 | "id": "7bce321b-089b-434b-9f3d-f74bf19acf1d", | 301 | "id": "7bce321b-089b-434b-9f3d-f74bf19acf1d", | ||
| 263 | "name": "recocido-simulado", | 302 | "name": "recocido-simulado", | ||
| 264 | "state": "active", | 303 | "state": "active", | ||
| 265 | "vocabulary_id": null | 304 | "vocabulary_id": null | ||
| 266 | }, | 305 | }, | ||
| 267 | { | 306 | { | ||
| 268 | "display_name": "simulacin-epidemiolgica", | 307 | "display_name": "simulacin-epidemiolgica", | ||
| 269 | "id": "91720075-41c3-4ddf-b8c3-be5cbf4fb8c9", | 308 | "id": "91720075-41c3-4ddf-b8c3-be5cbf4fb8c9", | ||
| 270 | "name": "simulacin-epidemiolgica", | 309 | "name": "simulacin-epidemiolgica", | ||
| 271 | "state": "active", | 310 | "state": "active", | ||
| 272 | "vocabulary_id": null | 311 | "vocabulary_id": null | ||
| 273 | }, | 312 | }, | ||
| 274 | { | 313 | { | ||
| 275 | "display_name": "simulacin-estocstica", | 314 | "display_name": "simulacin-estocstica", | ||
| 276 | "id": "8799ca52-747e-40d7-9810-0a4a0c91dcc2", | 315 | "id": "8799ca52-747e-40d7-9810-0a4a0c91dcc2", | ||
| 277 | "name": "simulacin-estocstica", | 316 | "name": "simulacin-estocstica", | ||
| 278 | "state": "active", | 317 | "state": "active", | ||
| 279 | "vocabulary_id": null | 318 | "vocabulary_id": null | ||
| 280 | }, | 319 | }, | ||
| 281 | { | 320 | { | ||
| 282 | "display_name": "validacin-cruzada", | 321 | "display_name": "validacin-cruzada", | ||
| 283 | "id": "2848a7eb-a2ef-45ec-b2b3-2ab1d895d992", | 322 | "id": "2848a7eb-a2ef-45ec-b2b3-2ab1d895d992", | ||
| 284 | "name": "validacin-cruzada", | 323 | "name": "validacin-cruzada", | ||
| 285 | "state": "active", | 324 | "state": "active", | ||
| 286 | "vocabulary_id": null | 325 | "vocabulary_id": null | ||
| 287 | }, | 326 | }, | ||
| 288 | { | 327 | { | ||
| 289 | "display_name": "wuhan", | 328 | "display_name": "wuhan", | ||
| 290 | "id": "92dd7681-09d4-4e12-94c5-6aa1df49c94b", | 329 | "id": "92dd7681-09d4-4e12-94c5-6aa1df49c94b", | ||
| 291 | "name": "wuhan", | 330 | "name": "wuhan", | ||
| 292 | "state": "active", | 331 | "state": "active", | ||
| 293 | "vocabulary_id": null | 332 | "vocabulary_id": null | ||
| 294 | } | 333 | } | ||
| 295 | ], | 334 | ], | ||
| 296 | "title": "Predicci\u00f3n de COVID-19 en Hubei, China: | 335 | "title": "Predicci\u00f3n de COVID-19 en Hubei, China: | ||
| 297 | optimizaci\u00f3n de modelos de contagio con Recocido Simulado", | 336 | optimizaci\u00f3n de modelos de contagio con Recocido Simulado", | ||
| 298 | "type": "dataset", | 337 | "type": "dataset", | ||
| 299 | "url": | 338 | "url": | ||
| 300 | politanos-optimizacion-de-modelos-de-contagio-con-recocido-simulado/", | 339 | politanos-optimizacion-de-modelos-de-contagio-con-recocido-simulado/", | ||
| 301 | "version": null | 340 | "version": null | ||
| 302 | } | 341 | } |
