Cambios
En el instante 21 de octubre de 2025, 8:59:06 UTC,
-
Añadido recurso Enhancing Epidemic Prediction Using Simulated Annealing for Parameter Optimization in Infection Network Inference a Enhancing Epidemic Prediction Using Simulated Annealing for Parameter Optimization in Infection Network Inference
| f | 1 | { | f | 1 | { |
| 2 | "author": "T Hoven, A Garcia-Robledo, M Zangiabady", | 2 | "author": "T Hoven, A Garcia-Robledo, M Zangiabady", | ||
| 3 | "author_email": null, | 3 | "author_email": null, | ||
| 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 5 | "extras": [ | 5 | "extras": [ | ||
| 6 | { | 6 | { | ||
| 7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
| 8 | "value": "2024" | 8 | "value": "2024" | ||
| 9 | }, | 9 | }, | ||
| 10 | { | 10 | { | ||
| 11 | "key": "DOI", | 11 | "key": "DOI", | ||
| 12 | "value": "https://doi.org/10.1109/acai63924.2024.10899726" | 12 | "value": "https://doi.org/10.1109/acai63924.2024.10899726" | ||
| 13 | }, | 13 | }, | ||
| 14 | { | 14 | { | ||
| 15 | "key": "Google Scholar URL", | 15 | "key": "Google Scholar URL", | ||
| 16 | "value": | 16 | "value": | ||
| 17 | gesize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:0EnyYjriUFMC" | 17 | gesize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:0EnyYjriUFMC" | ||
| 18 | }, | 18 | }, | ||
| 19 | { | 19 | { | ||
| 20 | "key": "Identificador hash", | 20 | "key": "Identificador hash", | ||
| 21 | "value": "28b290cd9e78" | 21 | "value": "28b290cd9e78" | ||
| 22 | }, | 22 | }, | ||
| 23 | { | 23 | { | ||
| 24 | "key": "Lugar de publicaci\u00f3n", | 24 | "key": "Lugar de publicaci\u00f3n", | ||
| 25 | "value": "2024 7th International Conference on Algorithms, | 25 | "value": "2024 7th International Conference on Algorithms, | ||
| 26 | Computing and Artificial \u2026, 2024" | 26 | Computing and Artificial \u2026, 2024" | ||
| 27 | }, | 27 | }, | ||
| 28 | { | 28 | { | ||
| 29 | "key": "Tipo", | 29 | "key": "Tipo", | ||
| 30 | "value": "Publicaci\u00f3n" | 30 | "value": "Publicaci\u00f3n" | ||
| 31 | }, | 31 | }, | ||
| 32 | { | 32 | { | ||
| 33 | "key": "Tipo de publicaci\u00f3n", | 33 | "key": "Tipo de publicaci\u00f3n", | ||
| 34 | "value": "Conferencia" | 34 | "value": "Conferencia" | ||
| 35 | }, | 35 | }, | ||
| 36 | { | 36 | { | ||
| 37 | "key": "URL directo", | 37 | "key": "URL directo", | ||
| 38 | "value": | 38 | "value": | ||
| 39 | "https://research.utwente.nl/files/464834148/manuscript_3_.pdf" | 39 | "https://research.utwente.nl/files/464834148/manuscript_3_.pdf" | ||
| 40 | } | 40 | } | ||
| 41 | ], | 41 | ], | ||
| 42 | "groups": [ | 42 | "groups": [ | ||
| 43 | { | 43 | { | ||
| 44 | "description": "", | 44 | "description": "", | ||
| 45 | "display_name": "Publicaciones", | 45 | "display_name": "Publicaciones", | ||
| 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
| 47 | "image_display_url": "", | 47 | "image_display_url": "", | ||
| 48 | "name": "publicaciones", | 48 | "name": "publicaciones", | ||
| 49 | "title": "Publicaciones" | 49 | "title": "Publicaciones" | ||
| 50 | } | 50 | } | ||
| 51 | ], | 51 | ], | ||
| 52 | "id": "6e38ea12-f158-478a-85d2-f4f5a48f7468", | 52 | "id": "6e38ea12-f158-478a-85d2-f4f5a48f7468", | ||
| 53 | "isopen": false, | 53 | "isopen": false, | ||
| 54 | "license_id": null, | 54 | "license_id": null, | ||
| 55 | "license_title": null, | 55 | "license_title": null, | ||
| 56 | "maintainer": null, | 56 | "maintainer": null, | ||
| 57 | "maintainer_email": null, | 57 | "maintainer_email": null, | ||
| 58 | "metadata_created": "2025-10-21T08:59:06.185733", | 58 | "metadata_created": "2025-10-21T08:59:06.185733", | ||
| n | 59 | "metadata_modified": "2025-10-21T08:59:06.185741", | n | 59 | "metadata_modified": "2025-10-21T08:59:06.626317", |
| 60 | "name": "28b290cd9e78", | 60 | "name": "28b290cd9e78", | ||
| 61 | "notes": "Understanding and predicting outbreaks of epidemics has | 61 | "notes": "Understanding and predicting outbreaks of epidemics has | ||
| 62 | become a major focus since COVID-19. Researchers have explored various | 62 | become a major focus since COVID-19. Researchers have explored various | ||
| 63 | methods, from basic curve fitting to complex machine learning | 63 | methods, from basic curve fitting to complex machine learning | ||
| 64 | techniques, to predict how the virus spreads. One promising method is | 64 | techniques, to predict how the virus spreads. One promising method is | ||
| 65 | the Network Inference-based Prediction Algorithm (NIPA), which uses | 65 | the Network Inference-based Prediction Algorithm (NIPA), which uses | ||
| 66 | the SIR-model and the least absolute shrinkage and selection operator | 66 | the SIR-model and the least absolute shrinkage and selection operator | ||
| 67 | to estimate how the infections spread over different regions. However, | 67 | to estimate how the infections spread over different regions. However, | ||
| 68 | fine-tuning the regularization parameter of NIPA can be complicated | 68 | fine-tuning the regularization parameter of NIPA can be complicated | ||
| 69 | because of the time-consuming process and sub-optimal result of k-fold | 69 | because of the time-consuming process and sub-optimal result of k-fold | ||
| 70 | Cross-Validation (CV). To overcome this, we suggest using Simulated | 70 | Cross-Validation (CV). To overcome this, we suggest using Simulated | ||
| 71 | Annealing (SA) to optimize NIPA's regularization parameter and find an | 71 | Annealing (SA) to optimize NIPA's regularization parameter and find an | ||
| 72 | optimal value for the curing probability. Our study aims to combine SA | 72 | optimal value for the curing probability. Our study aims to combine SA | ||
| 73 | with NIPA to make the process of choosing the optimal value for the | 73 | with NIPA to make the process of choosing the optimal value for the | ||
| 74 | parameters more effective. The results of the research show that the | 74 | parameters more effective. The results of the research show that the | ||
| 75 | accuracy is improved and therefore indicate that SA is an acceptable | 75 | accuracy is improved and therefore indicate that SA is an acceptable | ||
| 76 | alternative to CV, regardless of the computation time being higher.", | 76 | alternative to CV, regardless of the computation time being higher.", | ||
| n | 77 | "num_resources": 0, | n | 77 | "num_resources": 1, |
| 78 | "num_tags": 4, | 78 | "num_tags": 4, | ||
| 79 | "organization": { | 79 | "organization": { | ||
| 80 | "approval_status": "approved", | 80 | "approval_status": "approved", | ||
| 81 | "created": "2022-05-19T00:10:30.480393", | 81 | "created": "2022-05-19T00:10:30.480393", | ||
| 82 | "description": "Observatorio Metropolitano CentroGeo", | 82 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 83 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 83 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 84 | "image_url": | 84 | "image_url": | ||
| 85 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 85 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 86 | "is_organization": true, | 86 | "is_organization": true, | ||
| 87 | "name": "observatorio-metropolitano-centrogeo", | 87 | "name": "observatorio-metropolitano-centrogeo", | ||
| 88 | "state": "active", | 88 | "state": "active", | ||
| 89 | "title": "Observatorio Metropolitano CentroGeo", | 89 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 90 | "type": "organization" | 90 | "type": "organization" | ||
| 91 | }, | 91 | }, | ||
| 92 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 92 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 93 | "private": false, | 93 | "private": false, | ||
| 94 | "relationships_as_object": [], | 94 | "relationships_as_object": [], | ||
| 95 | "relationships_as_subject": [], | 95 | "relationships_as_subject": [], | ||
| t | 96 | "resources": [], | t | 96 | "resources": [ |
| 97 | { | ||||
| 98 | "cache_last_updated": null, | ||||
| 99 | "cache_url": null, | ||||
| 100 | "created": "2025-10-21T08:59:06.644596", | ||||
| 101 | "datastore_active": false, | ||||
| 102 | "description": "Understanding and predicting outbreaks of | ||||
| 103 | epidemics has become a major focus since COVID-19. Researchers have | ||||
| 104 | explored various methods, from basic curve fitting to complex machine | ||||
| 105 | learning techniques, to predict how the virus spreads. One promising | ||||
| 106 | method is the Network Inference-based Prediction Algorithm (NIPA), | ||||
| 107 | which uses the SIR-model and the least absolute shrinkage and | ||||
| 108 | selection operator to estimate how the infections spread over | ||||
| 109 | different regions. However, fine-tuning the regularization parameter | ||||
| 110 | of NIPA can be complicated because of the time-consuming process and | ||||
| 111 | sub-optimal result of k-fold Cross-Validation (CV). To overcome this, | ||||
| 112 | we suggest using Simulated Annealing (SA) to optimize NIPA's | ||||
| 113 | regularization parameter and find an optimal value for the curing | ||||
| 114 | probability. Our study aims to combine SA with NIPA to make the | ||||
| 115 | process of choosing the optimal value for the parameters more | ||||
| 116 | effective. The results of the research show that the accuracy is | ||||
| 117 | improved and therefore indicate that SA is an acceptable alternative | ||||
| 118 | to CV, regardless of the computation time being higher.", | ||||
| 119 | "format": "HTML", | ||||
| 120 | "hash": "", | ||||
| 121 | "id": "fa8319f3-c5bf-431d-9984-96c1604fac70", | ||||
| 122 | "last_modified": null, | ||||
| 123 | "metadata_modified": "2025-10-21T08:59:06.630303", | ||||
| 124 | "mimetype": null, | ||||
| 125 | "mimetype_inner": null, | ||||
| 126 | "name": "Enhancing Epidemic Prediction Using Simulated Annealing | ||||
| 127 | for Parameter Optimization in Infection Network Inference", | ||||
| 128 | "package_id": "6e38ea12-f158-478a-85d2-f4f5a48f7468", | ||||
| 129 | "position": 0, | ||||
| 130 | "resource_type": null, | ||||
| 131 | "size": null, | ||||
| 132 | "state": "active", | ||||
| 133 | "url": | ||||
| 134 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:0EnyYjriUFMC", | ||||
| 135 | "url_type": null | ||||
| 136 | } | ||||
| 137 | ], | ||||
| 97 | "state": "active", | 138 | "state": "active", | ||
| 98 | "tags": [ | 139 | "tags": [ | ||
| 99 | { | 140 | { | ||
| 100 | "display_name": "2024", | 141 | "display_name": "2024", | ||
| 101 | "id": "83ca0aff-0e55-47cc-a3c4-ef8aebf15b19", | 142 | "id": "83ca0aff-0e55-47cc-a3c4-ef8aebf15b19", | ||
| 102 | "name": "2024", | 143 | "name": "2024", | ||
| 103 | "state": "active", | 144 | "state": "active", | ||
| 104 | "vocabulary_id": null | 145 | "vocabulary_id": null | ||
| 105 | }, | 146 | }, | ||
| 106 | { | 147 | { | ||
| 107 | "display_name": "albertogarob", | 148 | "display_name": "albertogarob", | ||
| 108 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | 149 | "id": "b079b3e9-8dbb-4423-88fb-f095153d314a", | ||
| 109 | "name": "albertogarob", | 150 | "name": "albertogarob", | ||
| 110 | "state": "active", | 151 | "state": "active", | ||
| 111 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
| 112 | }, | 153 | }, | ||
| 113 | { | 154 | { | ||
| 114 | "display_name": "computer-science", | 155 | "display_name": "computer-science", | ||
| 115 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 156 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
| 116 | "name": "computer-science", | 157 | "name": "computer-science", | ||
| 117 | "state": "active", | 158 | "state": "active", | ||
| 118 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
| 119 | }, | 160 | }, | ||
| 120 | { | 161 | { | ||
| 121 | "display_name": "medicine", | 162 | "display_name": "medicine", | ||
| 122 | "id": "437735c8-61e7-407a-902d-119c79632914", | 163 | "id": "437735c8-61e7-407a-902d-119c79632914", | ||
| 123 | "name": "medicine", | 164 | "name": "medicine", | ||
| 124 | "state": "active", | 165 | "state": "active", | ||
| 125 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
| 126 | } | 167 | } | ||
| 127 | ], | 168 | ], | ||
| 128 | "title": "Enhancing Epidemic Prediction Using Simulated Annealing | 169 | "title": "Enhancing Epidemic Prediction Using Simulated Annealing | ||
| 129 | for Parameter Optimization in Infection Network Inference", | 170 | for Parameter Optimization in Infection Network Inference", | ||
| 130 | "type": "dataset", | 171 | "type": "dataset", | ||
| 131 | "url": | 172 | "url": | ||
| 132 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:0EnyYjriUFMC", | 173 | esize=100&sortby=pubdate&citation_for_view=b81TvMMAAAAJ:0EnyYjriUFMC", | ||
| 133 | "version": null | 174 | "version": null | ||
| 134 | } | 175 | } |
