Cambios
En el instante 21 de octubre de 2025, 9:00:59 UTC,
-
Añadido recurso Homicide forecasting for the state of Guanajuato using LSTM and geospatial information a Homicide forecasting for the state of Guanajuato using LSTM and geospatial information
| f | 1 | { | f | 1 | { |
| 2 | "author": "JH Garc\u00eda-G\u00f3mez, SI Valdez, H Carlos", | 2 | "author": "JH Garc\u00eda-G\u00f3mez, SI Valdez, H Carlos", | ||
| 3 | "author_email": null, | 3 | "author_email": null, | ||
| 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | 4 | "creator_user_id": "a3da3ec9-3fd4-47a4-8d04-0a90b09614e0", | ||
| 5 | "extras": [ | 5 | "extras": [ | ||
| 6 | { | 6 | { | ||
| 7 | "key": "A\u00f1o", | 7 | "key": "A\u00f1o", | ||
| 8 | "value": "2022" | 8 | "value": "2022" | ||
| 9 | }, | 9 | }, | ||
| 10 | { | 10 | { | ||
| 11 | "key": "DOI", | 11 | "key": "DOI", | ||
| 12 | "value": "https://doi.org/10.1109/enc56672.2022.9882957" | 12 | "value": "https://doi.org/10.1109/enc56672.2022.9882957" | ||
| 13 | }, | 13 | }, | ||
| 14 | { | 14 | { | ||
| 15 | "key": "Google Scholar URL", | 15 | "key": "Google Scholar URL", | ||
| 16 | "value": | 16 | "value": | ||
| 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:nrtMV_XWKgEC" | 17 | gesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:nrtMV_XWKgEC" | ||
| 18 | }, | 18 | }, | ||
| 19 | { | 19 | { | ||
| 20 | "key": "Identificador hash", | 20 | "key": "Identificador hash", | ||
| 21 | "value": "e56db48de6c5" | 21 | "value": "e56db48de6c5" | ||
| 22 | }, | 22 | }, | ||
| 23 | { | 23 | { | ||
| 24 | "key": "Lugar de publicaci\u00f3n", | 24 | "key": "Lugar de publicaci\u00f3n", | ||
| 25 | "value": "2022 IEEE Mexican International Conference on Computer | 25 | "value": "2022 IEEE Mexican International Conference on Computer | ||
| 26 | Science (ENC), 1-6, 2022" | 26 | Science (ENC), 1-6, 2022" | ||
| 27 | }, | 27 | }, | ||
| 28 | { | 28 | { | ||
| 29 | "key": "Tipo", | 29 | "key": "Tipo", | ||
| 30 | "value": "Publicaci\u00f3n" | 30 | "value": "Publicaci\u00f3n" | ||
| 31 | }, | 31 | }, | ||
| 32 | { | 32 | { | ||
| 33 | "key": "Tipo de publicaci\u00f3n", | 33 | "key": "Tipo de publicaci\u00f3n", | ||
| 34 | "value": "Conferencia" | 34 | "value": "Conferencia" | ||
| 35 | }, | 35 | }, | ||
| 36 | { | 36 | { | ||
| 37 | "key": "URL directo", | 37 | "key": "URL directo", | ||
| 38 | "value": | 38 | "value": | ||
| 39 | "https://ieeexplore.ieee.org/abstract/document/9882957/" | 39 | "https://ieeexplore.ieee.org/abstract/document/9882957/" | ||
| 40 | } | 40 | } | ||
| 41 | ], | 41 | ], | ||
| 42 | "groups": [ | 42 | "groups": [ | ||
| 43 | { | 43 | { | ||
| 44 | "description": "", | 44 | "description": "", | ||
| 45 | "display_name": "Publicaciones", | 45 | "display_name": "Publicaciones", | ||
| 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | 46 | "id": "8be672a5-4640-455e-a4f3-46b52b66c07b", | ||
| 47 | "image_display_url": "", | 47 | "image_display_url": "", | ||
| 48 | "name": "publicaciones", | 48 | "name": "publicaciones", | ||
| 49 | "title": "Publicaciones" | 49 | "title": "Publicaciones" | ||
| 50 | } | 50 | } | ||
| 51 | ], | 51 | ], | ||
| 52 | "id": "3292693d-7b11-4adb-a634-afa65be92a8f", | 52 | "id": "3292693d-7b11-4adb-a634-afa65be92a8f", | ||
| 53 | "isopen": false, | 53 | "isopen": false, | ||
| 54 | "license_id": null, | 54 | "license_id": null, | ||
| 55 | "license_title": null, | 55 | "license_title": null, | ||
| 56 | "maintainer": null, | 56 | "maintainer": null, | ||
| 57 | "maintainer_email": null, | 57 | "maintainer_email": null, | ||
| 58 | "metadata_created": "2025-10-21T09:00:58.457241", | 58 | "metadata_created": "2025-10-21T09:00:58.457241", | ||
| n | 59 | "metadata_modified": "2025-10-21T09:00:58.457251", | n | 59 | "metadata_modified": "2025-10-21T09:00:58.931471", |
| 60 | "name": "e56db48de6c5", | 60 | "name": "e56db48de6c5", | ||
| 61 | "notes": "In the last years, intentional homicides have increased | 61 | "notes": "In the last years, intentional homicides have increased | ||
| 62 | significantly in Mexico. A proven strategy to confront the problem is | 62 | significantly in Mexico. A proven strategy to confront the problem is | ||
| 63 | applying predictive methods used to anticipate the resources and | 63 | applying predictive methods used to anticipate the resources and | ||
| 64 | logistics of the security corps. This work tackles the forecasting of | 64 | logistics of the security corps. This work tackles the forecasting of | ||
| 65 | intentional homicides using three forecasting methods: ARIMA, LSTM, | 65 | intentional homicides using three forecasting methods: ARIMA, LSTM, | ||
| 66 | and NeuralProphet, applied to the 16 municipalities of Guanajuato | 66 | and NeuralProphet, applied to the 16 municipalities of Guanajuato | ||
| 67 | state with the highest count. The approach is replicable to all | 67 | state with the highest count. The approach is replicable to all | ||
| 68 | Mexico's municipalities since the same data are reported. We conducted | 68 | Mexico's municipalities since the same data are reported. We conducted | ||
| 69 | an exhaustive search of optimal hyper-parameters of the LSTM and an | 69 | an exhaustive search of optimal hyper-parameters of the LSTM and an | ||
| 70 | exhaustive search for the optimal lag for NeuralProphet. In the same | 70 | exhaustive search for the optimal lag for NeuralProphet. In the same | ||
| 71 | regard, different combinations of neighboring municipalities were | 71 | regard, different combinations of neighboring municipalities were | ||
| 72 | tested to include geospatial information. The methods are compared via | 72 | tested to include geospatial information. The methods are compared via | ||
| 73 | MAE, MSE, and bootstrap hypothesis tests. LSTM improved with | 73 | MAE, MSE, and bootstrap hypothesis tests. LSTM improved with | ||
| 74 | geospatial data, so the best LSTM model showed a superior performance | 74 | geospatial data, so the best LSTM model showed a superior performance | ||
| 75 | to the ARIMA by 23.1% in the MAE and 35.6% in the MSE. On the other | 75 | to the ARIMA by 23.1% in the MAE and 35.6% in the MSE. On the other | ||
| 76 | hand, NeuralProphet showed a similar performance to the ARIMA | 76 | hand, NeuralProphet showed a similar performance to the ARIMA | ||
| 77 | according to the bootstrap hypothesis test, showing no statistically | 77 | according to the bootstrap hypothesis test, showing no statistically | ||
| 78 | significant difference between them. The results show that the | 78 | significant difference between them. The results show that the | ||
| 79 | phenomenon is related to the spatial context and encourage the use of | 79 | phenomenon is related to the spatial context and encourage the use of | ||
| 80 | geospatial information in forecasting models.", | 80 | geospatial information in forecasting models.", | ||
| n | 81 | "num_resources": 0, | n | 81 | "num_resources": 1, |
| 82 | "num_tags": 10, | 82 | "num_tags": 10, | ||
| 83 | "organization": { | 83 | "organization": { | ||
| 84 | "approval_status": "approved", | 84 | "approval_status": "approved", | ||
| 85 | "created": "2022-05-19T00:10:30.480393", | 85 | "created": "2022-05-19T00:10:30.480393", | ||
| 86 | "description": "Observatorio Metropolitano CentroGeo", | 86 | "description": "Observatorio Metropolitano CentroGeo", | ||
| 87 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 87 | "id": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 88 | "image_url": | 88 | "image_url": | ||
| 89 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | 89 | "2022-05-19-001030.456616FullColor1280x1024LogoOnly.png", | ||
| 90 | "is_organization": true, | 90 | "is_organization": true, | ||
| 91 | "name": "observatorio-metropolitano-centrogeo", | 91 | "name": "observatorio-metropolitano-centrogeo", | ||
| 92 | "state": "active", | 92 | "state": "active", | ||
| 93 | "title": "Observatorio Metropolitano CentroGeo", | 93 | "title": "Observatorio Metropolitano CentroGeo", | ||
| 94 | "type": "organization" | 94 | "type": "organization" | ||
| 95 | }, | 95 | }, | ||
| 96 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | 96 | "owner_org": "b3b3a79d-748a-4464-9471-732b6c74ec53", | ||
| 97 | "private": false, | 97 | "private": false, | ||
| 98 | "relationships_as_object": [], | 98 | "relationships_as_object": [], | ||
| 99 | "relationships_as_subject": [], | 99 | "relationships_as_subject": [], | ||
| t | 100 | "resources": [], | t | 100 | "resources": [ |
| 101 | { | ||||
| 102 | "cache_last_updated": null, | ||||
| 103 | "cache_url": null, | ||||
| 104 | "created": "2025-10-21T09:00:58.965010", | ||||
| 105 | "datastore_active": false, | ||||
| 106 | "description": "In the last years, intentional homicides have | ||||
| 107 | increased significantly in Mexico. A proven strategy to confront the | ||||
| 108 | problem is applying predictive methods used to anticipate the | ||||
| 109 | resources and logistics of the security corps. This work tackles the | ||||
| 110 | forecasting of intentional homicides using three forecasting methods: | ||||
| 111 | ARIMA, LSTM, and NeuralProphet, applied to the 16 municipalities of | ||||
| 112 | Guanajuato state with the highest count. The approach is replicable to | ||||
| 113 | all Mexico's municipalities since the same data are reported. We | ||||
| 114 | conducted an exhaustive search of optimal hyper-parameters of the LSTM | ||||
| 115 | and an exhaustive search for the optimal lag for NeuralProphet. In the | ||||
| 116 | same regard, different combinations of neighboring municipalities were | ||||
| 117 | tested to include geospatial information. The methods are compared via | ||||
| 118 | MAE, MSE, and bootstrap hypothesis tests. LSTM improved with | ||||
| 119 | geospatial data, so the best LSTM model showed a superior performance | ||||
| 120 | to the ARIMA by 23.1% in the MAE and 35.6% in the MSE. On the other | ||||
| 121 | hand, NeuralProphet showed a similar performance to the ARIMA | ||||
| 122 | according to the bootstrap hypothesis test, showing no statistically | ||||
| 123 | significant difference between them. The results show that the | ||||
| 124 | phenomenon is related to the spatial context and encourage the use of | ||||
| 125 | geospatial information in forecasting models.", | ||||
| 126 | "format": "HTML", | ||||
| 127 | "hash": "", | ||||
| 128 | "id": "8f23c2ac-59fe-4f21-a0f0-d12a92e90900", | ||||
| 129 | "last_modified": null, | ||||
| 130 | "metadata_modified": "2025-10-21T09:00:58.941061", | ||||
| 131 | "mimetype": null, | ||||
| 132 | "mimetype_inner": null, | ||||
| 133 | "name": "Homicide forecasting for the state of Guanajuato using | ||||
| 134 | LSTM and geospatial information", | ||||
| 135 | "package_id": "3292693d-7b11-4adb-a634-afa65be92a8f", | ||||
| 136 | "position": 0, | ||||
| 137 | "resource_type": null, | ||||
| 138 | "size": null, | ||||
| 139 | "state": "active", | ||||
| 140 | "url": | ||||
| 141 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:nrtMV_XWKgEC", | ||||
| 142 | "url_type": null | ||||
| 143 | } | ||||
| 144 | ], | ||||
| 101 | "state": "active", | 145 | "state": "active", | ||
| 102 | "tags": [ | 146 | "tags": [ | ||
| 103 | { | 147 | { | ||
| 104 | "display_name": "2022", | 148 | "display_name": "2022", | ||
| 105 | "id": "b987b800-5e2d-4806-a176-a95dcbf738d5", | 149 | "id": "b987b800-5e2d-4806-a176-a95dcbf738d5", | ||
| 106 | "name": "2022", | 150 | "name": "2022", | ||
| 107 | "state": "active", | 151 | "state": "active", | ||
| 108 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
| 109 | }, | 153 | }, | ||
| 110 | { | 154 | { | ||
| 111 | "display_name": "artificial-intelligence", | 155 | "display_name": "artificial-intelligence", | ||
| 112 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | 156 | "id": "47cb06d3-c2a4-42af-b633-03eea6181083", | ||
| 113 | "name": "artificial-intelligence", | 157 | "name": "artificial-intelligence", | ||
| 114 | "state": "active", | 158 | "state": "active", | ||
| 115 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
| 116 | }, | 160 | }, | ||
| 117 | { | 161 | { | ||
| 118 | "display_name": "autoregressive-integrated-moving-average", | 162 | "display_name": "autoregressive-integrated-moving-average", | ||
| 119 | "id": "84d0899a-0cce-49ed-a1c5-55f1f2910c57", | 163 | "id": "84d0899a-0cce-49ed-a1c5-55f1f2910c57", | ||
| 120 | "name": "autoregressive-integrated-moving-average", | 164 | "name": "autoregressive-integrated-moving-average", | ||
| 121 | "state": "active", | 165 | "state": "active", | ||
| 122 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
| 123 | }, | 167 | }, | ||
| 124 | { | 168 | { | ||
| 125 | "display_name": "computer-science", | 169 | "display_name": "computer-science", | ||
| 126 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | 170 | "id": "29cae056-cd7e-43f7-be5b-b25869a3fbf2", | ||
| 127 | "name": "computer-science", | 171 | "name": "computer-science", | ||
| 128 | "state": "active", | 172 | "state": "active", | ||
| 129 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
| 130 | }, | 174 | }, | ||
| 131 | { | 175 | { | ||
| 132 | "display_name": "context-archaeology", | 176 | "display_name": "context-archaeology", | ||
| 133 | "id": "a031c0ee-d17a-4f2b-a798-26d36b194438", | 177 | "id": "a031c0ee-d17a-4f2b-a798-26d36b194438", | ||
| 134 | "name": "context-archaeology", | 178 | "name": "context-archaeology", | ||
| 135 | "state": "active", | 179 | "state": "active", | ||
| 136 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
| 137 | }, | 181 | }, | ||
| 138 | { | 182 | { | ||
| 139 | "display_name": "econometrics", | 183 | "display_name": "econometrics", | ||
| 140 | "id": "4012759c-588f-49af-8586-166086a779ca", | 184 | "id": "4012759c-588f-49af-8586-166086a779ca", | ||
| 141 | "name": "econometrics", | 185 | "name": "econometrics", | ||
| 142 | "state": "active", | 186 | "state": "active", | ||
| 143 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
| 144 | }, | 188 | }, | ||
| 145 | { | 189 | { | ||
| 146 | "display_name": "geospatial-analysis", | 190 | "display_name": "geospatial-analysis", | ||
| 147 | "id": "acd92b42-66d6-40aa-81b1-f0129fe5c6a9", | 191 | "id": "acd92b42-66d6-40aa-81b1-f0129fe5c6a9", | ||
| 148 | "name": "geospatial-analysis", | 192 | "name": "geospatial-analysis", | ||
| 149 | "state": "active", | 193 | "state": "active", | ||
| 150 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
| 151 | }, | 195 | }, | ||
| 152 | { | 196 | { | ||
| 153 | "display_name": "machine-learning", | 197 | "display_name": "machine-learning", | ||
| 154 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | 198 | "id": "99557dd8-2914-4e28-8278-7a042cfb23d0", | ||
| 155 | "name": "machine-learning", | 199 | "name": "machine-learning", | ||
| 156 | "state": "active", | 200 | "state": "active", | ||
| 157 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
| 158 | }, | 202 | }, | ||
| 159 | { | 203 | { | ||
| 160 | "display_name": "svaldez", | 204 | "display_name": "svaldez", | ||
| 161 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | 205 | "id": "f42a8210-1cef-4f03-98a0-a6d3d0d4f848", | ||
| 162 | "name": "svaldez", | 206 | "name": "svaldez", | ||
| 163 | "state": "active", | 207 | "state": "active", | ||
| 164 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
| 165 | }, | 209 | }, | ||
| 166 | { | 210 | { | ||
| 167 | "display_name": "time-series", | 211 | "display_name": "time-series", | ||
| 168 | "id": "1caecee0-56f0-4346-bd8f-69ac1d3f1c2c", | 212 | "id": "1caecee0-56f0-4346-bd8f-69ac1d3f1c2c", | ||
| 169 | "name": "time-series", | 213 | "name": "time-series", | ||
| 170 | "state": "active", | 214 | "state": "active", | ||
| 171 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
| 172 | } | 216 | } | ||
| 173 | ], | 217 | ], | ||
| 174 | "title": "Homicide forecasting for the state of Guanajuato using | 218 | "title": "Homicide forecasting for the state of Guanajuato using | ||
| 175 | LSTM and geospatial information", | 219 | LSTM and geospatial information", | ||
| 176 | "type": "dataset", | 220 | "type": "dataset", | ||
| 177 | "url": | 221 | "url": | ||
| 178 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:nrtMV_XWKgEC", | 222 | esize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:nrtMV_XWKgEC", | ||
| 179 | "version": null | 223 | "version": null | ||
| 180 | } | 224 | } |
