Estás viendo una versión antigua de este producto. Para ver la versión actual, click aquí.

Feature Analysis for Urban-land Change of Morelia City Via the TOC Curve

The feature analysis for feature selection is an important step for defining the inputs of the simulation models for urban growth. The simulation models are valuable tools for describing the spatiotemporal evolution and probable scenarios of the urban development of a region. These models use predictors such as distance to the city center, highways, roads, and water bodies, among others, to forecast land changes. The importance of each characteristic is unknown a priori. Furthermore, whether a predictor provides any information is not evident. In this work, we analyze the predictive response of a set of features to determine whether they are informative and their degree of influence in the prediction. The analysis uses the Total Operating Characteristic (TOC) curve to measure a feature's relevance. The results provide insights into the relation of a feature with the urban land change and the degree of influence as a single predictor. Although a broader study that uses sets of features could provide further conclusions, this study serves as a base comparing method and a starting point for feature selection in urban simulation models.

Datos y Recursos

Información Adicional

Campo Valor
Fuente https://scholar.google.com/citations?view_op=view_citation&hl=es&user=MG1jyREAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:vbGhcppDl1QC
Autor R Lopez-Farias, SI Valdez, A Garcia-Robledo, T Bilintoh, FN Bautista
Última actualización octubre 21, 2025, 09:00 (UTC)
Creado octubre 21, 2025, 08:59 (UTC)
Año 2023
DOI https://doi.org/10.1109/enc60556.2023.10508696
Google Scholar URL https://scholar.google.com/citations?view_op=view_citation&hl=es&user=MG1jyREAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=MG1jyREAAAAJ:vbGhcppDl1QC
Identificador hash c7273c69938b
Lugar de publicación 2023 Mexican International Conference on Computer Science (ENC), 1-8, 2023
Tipo Publicación
Tipo de publicación Conferencia
URL directo https://ieeexplore.ieee.org/abstract/document/10508696/